K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2015

a,

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}<50.\frac{1}{51}<1\)

 

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>50.\frac{1}{100}=\frac{1}{2}\)

kết hợp 2 trường hợp trên ta được điêu phải chứng minh

b, chứng minh tương tự câu a

26 tháng 8 2018

Câu a:
Ta có: 1/51 > 1/100 ; 1/52>1/100 ..... ; 1/99>1/100
        => 1/51+1/52+...+1/100 > 1/100+1/100+.....+1/100 ( 50 số ) = 50/100=1/2 (1)
Ta lại có: 1/52<1/51; 1/53<1/51;....; 1/100<1/51
        => 1/51+1/52+....+1/100<1/51+1/51+.......+1/51 ( 50 số = 50/51<1 (2)
  Từ (1) (2) => đpcm
Câu b làm tương tự :) 


        

28 tháng 3 2018

a,1/51 > 1/100

  1/52 > 1/100

   1/53 > 1/100

    ...

     1/100=1/100

=>H>1/100 + 1/100 + 1/100 +...+1/100

    H>50/100=1/2   

          1/51<1/50

         1/52<1/50

           ....

           1/100<1/50

=>H<1/50+1/50+...+1/50

     H<50/50=1

 Vay1/2<H<1

23 tháng 4 2016

b, đặt cái 1/21 + 1/22 +1/23+....+1/40 là A nhé và A có 20 hạng tử

Ta  có 1/21 + 1/22 +1/ 23+......+1/30>1/30 +1/30 +....+1/30 =10/30 =1/3(*)

lại có 1/31 + 1/32+.....+1/40>1/40 + 1/40 + 1/40.....=10/40=1/4(**)

từ (*) và (**) => A> 1/3 +1/4

                       A>7/12

từng đó thì phải. Còn < 1/10 thì sai đề vì 7/12 > 1/10 mà.       Mình chỉ cm đc < 5/6 thôi

23 tháng 4 2016

a, ta có 1/51 + 1/52 + 1/53 + 1/54.....+1/100 > 1/100 + 1/100 + 1/100+......+1/100

=> 1/51 +1/52 +......+1/100 > 50/100 =1/2 ( vì có 50 hạng tử)

tương tự 1/51 + 1/52 +1/53 ..........+1/100 < 1/51 + 1/51 + 1/51 +1/51......

=> 1/51 + 1/52 + 1/53....+1/100 < 50/51 <1 

nên ta suy ra điều phải cm

1 tháng 4 2018

a) \(\frac{1}{2}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< 1\)

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}\right)+...+\left(\frac{1}{91}+\frac{1}{92}+...+\frac{1}{100}\right)\)\(\frac{1}{60}\cdot10< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{50}\cdot10\)

\(\frac{1}{6}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{5}\)(1)

\(\frac{1}{70}\cdot10< \frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}< \frac{1}{60}\cdot10\)

\(\frac{1}{7}< \frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}< \frac{1}{6}\)(2)

.... (tương tự )

\(\frac{1}{100}\cdot10< \frac{1}{91}+\frac{1}{92}+...+\frac{1}{100}< \frac{1}{90}\cdot10\)

\(\frac{1}{10}< \frac{1}{91}+...+\frac{1}{100}< \frac{1}{9}\)

1 tháng 4 2018

Từ (1)(2)(3)(4) và (5)

\(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\)

\(\frac{1}{2}< \frac{1624}{2520}< \frac{1}{51}+...+\frac{1}{100}\)

\(1>\frac{1879}{2520}>\frac{1}{51}+...+\frac{1}{100}\)