
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có:\(x^{3m+1}+x^{3n+2}+1=x^{3m}x-x+3^{3n}-x^2+x^2+x+1=x\left(\left(x^3\right)^m-1\right)+x^2\left(\left(x^3\right)^n-1\right)+\left(x^2+x+1\right)\)Ta lại có: (Hằng đẳng thức)
\(a^n+b^n=\left(a+b\right)\left(a^{n-1}+a^{n-2}b+...+ab^{n-2}+b^{n-1}\right)\)chia hết cho a+b
=>\(\left(x^3\right)^m-1\)chia hết cho \(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)chia hết cho \(x^2+x+1\)
và \(\left(x^3\right)^n-1\)chia hết cho \(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)chia hết cho \(x^2+x+1\)
mà \(x^{3m+1}+x^{3n+2}+1=x^{3m}x-x+3^{3n}-x^2+x^2+x+1=x\left(\left(x^3\right)^m-1\right)+x^2\left(\left(x^3\right)^n-1\right)+\left(x^2+x+1\right)\)
=> \(x^{3m+1}+x^{3n+2}+1\) chia hết cho \(x^2+x+1\)
_________________________________________________________________________________
Xét
\(x^{3m+1}+x^{3n+2}+1-\left(x^2+x+1\right)\)
\(=x^{3m}.x+x^{3n}.x^2+1-x^2-x-1\)
\(=x\left(x^{3m}-1\right)+x^2\left(x^{3n}-1\right)\)
Do \(x^{3m}-1=\left(x^3\right)^m-1^m⋮x^3-1⋮x^2+x+1\)
\(x^{3n}-1=\left(x^3\right)^n-1^n⋮x^3-1⋮x^2+x+1\)
\(\Rightarrow x\left(x^{3m}-1\right)+x^2\left(x^{3n}-1\right)⋮x^2+x+1\)
\(\Rightarrow x^{3m+1}+x^{3n+2}+1-\left(x^2+x+1\right)⋮x^2+x+1\)
\(\Rightarrow x^{3m+1}+x^{3n+2}+1⋮x^2+x+1\)

\(\text{a.Ta có :}\)
\(x^{8n}+x^{4n}+1=x^{8n}+2x^{4n}+1-x^{4n}\)
\(=\left(x^{4n}+1\right)^2-\left(x^{2n}\right)^2\)
\(=\left(x^{4n}-x^{2n}+1\right)\left(x^{4n}+x^{2n}+1\right)\)
\(\text{Ta lại có :}\)
\(x^{4n}+x^{2n}+1=x^{4n}+2x^{2n}+1-x^{2n}\)
\(=\left(x^{2n}+1\right)^2-\left(x^n\right)^2=\left(x^{2n}-x^n+1\right)\left(x^{2n}+x^n+1\right)\)
\(\Rightarrow x^{8n}+x^{4n}+1=\left(x^{4n}-x^{2n}+1\right)\left(x^{2n}-x^n+1\right)\left(x^{2n}+x^n+1\right)\)
\(\Rightarrow x^{8n}+x^{4n}+1⋮x^{2n}+x^n+1\)

1) Ta có: \(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a+1\right)\left(a^2+2a\right)=a\left(a+1\right)\left(a+2\right)\)
Với \(a\in Z\)thì \(a\left(a+1\right)\left(a+2\right)\)là tích của 3 số nguyên liên tiếp nên\(⋮6\)
2)Với \(a\in Z\)Ta có:\(a\left(2a-3\right)-2a\left(a+1\right)=a\left(2a-3-2a-2\right)=-5a⋮5\)
3) Ta có:\(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1\)lớn hơn 0 với mọi x
4) Ta có: \(x^2-x+1=\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)lớn hơn 0 với mọi x
a, n. (2n -3 ) -2n .(n + 1 ) chia hết cho 5
b, n. ( n + 5 ) - (n -3 ) . ( n + 2 ) chia hết cho 6


2)Ta có: \(x^{3m+1}+x^{3n+2}+1\)= \(x^{3m+1}-x+x^{3n+2}-x^2+x^2+x+1\)
= \(x\left(x^{3m}-1\right)+x^2\left(x^{3n}-1\right)+\left(x^2+x+1\right)\)
Ta thấy: \(x^{3m}-1=\left(x^3\right)^m-1=\left(x^3-1\right)k\) \(⋮\) \(x^3-1\)
\(x^{3n}-1=\left(x^3\right)^n-1=\left(x^3-1\right)h\) \(⋮\) \(x^3-1\)
Do đó: \(x\left(x^{3m}-1\right)+x^2\left(x^{3n}-1\right)+\left(x^2+x+1\right)\) chia hết cho \(x^2+x+1\)
Vậy \(x^{3m+1}+x^{3n+2}+1\) chia hết cho \(x^2+x+1\)

1./ Khẳng định 1: Với mọi p tự nhiên > 0, ta đều có: yp - 1 = (y - 1)*(yp-1 + yp-2 + yp-3 +... + y + 1)
Hay yp - 1 chia hết cho y - 1 với mọi y nguyên > 1.
2./ Nếu m = n = 0 thì hiển nhiên x3*0+1 + x3*0+2 + 1 = x2 + x + 1 chia hết cho: x2 + x + 1
3./ Nếu m; n không đồng thời bằng 0 thì:
Viết \(A=x^{3m+1}+x^{3n+2}+1=x\cdot x^{3m}-x+x^2\cdot x^{3n}-x^2+x^2+x+1.\)
\(A=x\left(x^{3m}-1\right)+x^2\left(x^{3n}-1\right)+x^2+x+1\)
\(A=x\left(\left(x^3\right)^m-1\right)+x^2\left(\left(x^3\right)^n-1\right)+x^2+x+1\)
Áp dụng khẳng định 1 cho m, n tự nhiên > 0 ta có:
\(\left(x^3\right)^m-1\)và \(\left(x^3\right)^m-1\)chia hết cho x3 - 1. Mà x3 - 1 = (x - 1)(x2 + x + 1)
=> \(\left(x^3\right)^m-1\)và \(\left(x^3\right)^m-1\)chia hết cho x2 + x + 1
=> A chia hết cho x2 + x + 1 với mọi m,n là số tự nhiên. đpcm
Với m,n là các số tự nhiên ta có \(x^{3m+1}+x^{3n+1}+1=\left(x^{3m+1}-x\right)+\left(x^{3n+2}-x\right)+x^2+x+1\)
Ta thấy:
- \(x^{3m+1}-x=x\left(\left(x^3\right)^m-1\right)\) chia hết cho \(x^3-1\)và vì \(x^3-1\) chia hết cho x^2 + x + 1 nên x^(3m + 1) - x chia hết cho x^2 + x + 1.
ii/ x^(3n + 2) - x^2 = x^2[(x^3)^n - 1] chia hết cho x^3 - 1, và vì x^3 - 1 chia hết cho x^2 + x + 1 nên x^(3n + 2) - x^2 chia hết cho x^2 + x + 1.
Từ đó suy ra [x^(3m + 1) - x] + [x^(3n + 2) - x^2] + (x^2 + x + 1) chia hết cho x^2 + x + 1, hay x^(3m + 1) + x^(3n + 2) + 1 chia hết cho x^2 + x + 1. Đây là điều phải chứng minh.

1d) giải theo các bước giải phương trình bậc 2 bình thường : x1 = 5 , x2 = 2 .
\(x^{3m+1}+x^{3n+2}+1\\ =x^{3m+1}+x^{3n+2}+1-x-x^2+x+x^2\\ =\left(x^{3m+1}-x\right)+\left(x^{3n+2}-x^2\right)+\left(x^2+x+1\right)\\ =x\left(x^{3m}-1\right)+x^2\left(x^{3n}-1\right)+\left(x^2+x+1\right)\\ =\left(x^{3m}-1\right)\left(x+x^2\right)+\left(x^2+x+1\right)\\ =\left[\left(x^3\right)^m-1\right]\left(x+x^2\right)+\left(x^2+x+1\right)\\ =\left(x^3-1\right)S\left(x+x^2\right)+\left(x^2+x+1\right)\\ =S\left(x-1\right)\left(x^2+x+1\right)\left(x+x^2\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left[S\left(x-1\right)\left(x+x^2\right)+1\right]⋮\left(x^2+x+1\right)\forall m;n\)