\(x^2-x+\frac{1}{2}>0\)​​\(\forall x\)

Hìhì giúp...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

\(x^2-x+\dfrac{1}{2}=x^2-2\cdot\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{1}{4}+\dfrac{1}{2}\\ =\left(x^2-2\cdot\dfrac{1}{2}x+\dfrac{1}{4}\right)-\dfrac{1}{4}+\dfrac{1}{2}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\)

ta có: \(\left(x-\dfrac{1}{2}^{ }\right)^2\ge0\forall x\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}>0\forall x\left(vì\dfrac{1}{4}>0\right)\)

hay \(x^2-x+\dfrac{1}{2}>0\forall x\)

8 tháng 10 2019

a)\(x^2-2xy+y^2+1=\left(x+y\right)^2+1\ge1>0\)

b)\(x-x^2-1=-\left(x^2-x+\frac{1}{4}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\)

c)\(9x^2+12x+10=\left(9x^2+12x+4\right)+6=\left(3x+2\right)^2+6\ge6>0\)

d)\(3x^2-x+1=2x^2+\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=2x^2+\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0`\)

28 tháng 12 2016

ĐKXĐ: \(x\ne\pm2\)

a)\(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+4}{x^2-4}=\frac{x+2}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}+\frac{x^2+4}{x^2-4}\)

\(=\frac{x+2}{x^2-4}+\frac{x-2}{x^2-4}+\frac{x^2+4}{x^2-4}=\frac{x+2+x-2+x^2+4}{x^2-4}=\frac{x^2+2x+4}{x^2-4}=\frac{\left(x+1\right)^2+3}{x^2-4}\)

b)  \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+3\ge3>0\) 

=> A<0 khi \(x^2-4< 0\Leftrightarrow x^2< 4\)

Vì \(x^2\ge0\Rightarrow0\le x^2< 4\Leftrightarrow-2< x< 2\)

Tại sao lại x khác -1 thì A<0 vì khi x=-1 thì A=-1<0 mà!

1: \(x^2+x+1\)

\(=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

2: \(2x^2+2x+1\)

\(=2\left(x^2+x+\dfrac{1}{2}\right)\)

\(=2\left(x^2+x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)

\(=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\forall x\)

3: 

\(x^2+y^2=\left(x-y\right)^2+2xy=7^2+2\cdot60=169\)

\(x^4+y^4=\left(x^2+y^2\right)^2-2\cdot\left(xy\right)^2\)

\(=169^2-2\cdot60^2=21361\)

25 tháng 7 2019

a) 

Đặt \(A=9x^2-6x+2\)

\(=\left(3x\right)^2-2.3x+1+1\)

\(=\left(3x+1\right)^2+1\)

Ta có: \(\left(3x+1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(3x+1\right)^2+1\ge0+1;\forall x\)

Hay \(A\ge1>0;\forall x\)

Các phần khác tương tự cứ việc biến đổi thành hằng đẳng thức

25 tháng 7 2019

\(a,9x^2-6x+2\)

\(=\left(3x\right)^2-2.3x.1+1^2+1\)

\(=\left(3x-1\right)^2+1\)

\(\left(3x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(3x-1\right)^2+1\ge1>0\forall x\)

\(\Rightarrow9x^2-6x+2>0\forall x\)

\(b,x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

\(\Rightarrow x^2+x+1>0\forall x\)

30 tháng 4 2019

a, x+2/5 >=0 <=> x+2 >=0 <=> x>=-2

b. x+2/x-3 <0 <=> 1+5/x-3 <0 <=> 5/x-3 <-1 <=> x-3> -5 <=> x>-2

c. x-1/x-3 >1 <=> 1+ 2/x-3 >1 <=> 2/x-3 >0 <=> x-3 >0 <=> x>3

30 tháng 4 2019

A,x+ 2/5≥=0≤°≥*x+2*≥=0**=2

B,x,+2-3=1/5*3-0=5*3-1=3*-5=2

C,x-1/3+2+3*=2*3/0=x3-*