Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+\frac{x}{2}\right)^2+\left(\frac{x}{2}+1\right)^2+\frac{x^2}{2}=0\)
Cả 2 cái trên kia đều lớn hơn hoặc bằng 0 nhưng dấu "=" không xảy ra đồng thời nên VT>0 -> vô nghiệm
(x-1)(x4+x3+x2+x+1)=0
x5-1=0
x5=1
x=1 <=> x-1=0
<=> Phương trình vô nghiệm
Ta có \(\Leftrightarrow x^4+x^3+x^2+x+1=0\)
\(\Leftrightarrow x^4+x^2+x^3+x+x^2+1=0\)
\(\Leftrightarrow x^2\left(x^2+1\right)x\left(x^2+1\right)+\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+x+1=0\left(ktm\right)\\x^2+1=0\left(ktm\right)\end{cases}}\)
=> Pt vô nghiệm
đpcm.
\(x^4+x^3+x^2+x+1=0\)
\(\Rightarrow\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)=0\)
\(\Rightarrow x^5-1=0\)
\(\Rightarrow x^5=1\)
\(\Rightarrow x=1\)
Nhưng thay vào PT ko đúng nên PT vô nghiệm
\(x^2-3x+12=0\)
\(\Rightarrow\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{39}{4}=0\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{39}{4}=0\left(VLý\right)\)
Vậy PT vô nghiệm với mọi x∈R
\(x^2-6x+70=0\)
\(\Leftrightarrow x^2-6x+9+61=0\)
\(\Leftrightarrow\left(x-3\right)^2+61=0\)
\(\Leftrightarrow\left(x-3\right)^2=-61\) (vô lý)
-Vậy PT vô nghiệm.
Chọn B và D
Phương trình B vô nghiệm vì \(5x^2+10\ge10>0\forall x\)
Phương trình C vô nghiệm vì \(x^2+6\ge6>-9\forall x\)
B và C
vì \(5x^2+10=0\Leftrightarrow5x^2=-10\Leftrightarrow x^2=-2\)(VL)
\(x^2+6=-9\Leftrightarrow x^2=-15\left(VL\right)\)
ta có : x^2 - x + 1
= (x^2 - x + 1/4)+ 3/4
= ( x-1/2 )^2 +3/4
mà ( x - 1/2 )^2 > hoặc = 0 vs mọi x
=) ( x - 1/2)^2 + 3/4 > hoặc = 3/4 vs mọi x
hay x^2 - x +1 > hoặc = 0 vs mọi x
=) pt vô nghiệm
x^2 - x +1 = ( x - 1/2)^2 + 3/4
mà (x- 1/2 )^2 >= 0
=) (x - 1/2)^2 + 3/4 >=3/4
=) pt vô nghiệm