Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+x+1=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\)nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Vậy đa thức trên vô nghiệm
b) \(x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\)
Vì \(\left(x+1\right)^2\ge0\)nên \(\left(x+1\right)^2+2>0\)
Vậy đa thức trên vô nghiệm
Ta có : C(x) = P(x) + H(x)
=> C(x) = 4x2 - 1 + x4 + 3
=> C(x) = x4 + 4x2 + 2
Mà x4 \(\ge0\forall x\)
4x2 \(\ge0\forall x\)
Nên C(x) = x4 + 4x2 + 2 \(\ge2\forall x\)
=> C(x) = x4 + 4x2 + 2 \(\ne0\forall x\)
Vậy đa thức C(x) vô nhiệm
Áp dụng hằng đẳng thức đáng nhớ ta có :
x4+2x2+1=(x2+1)2
Ta có : (x2+1)2 luôn luôn lớn hơn hoặc bằng 0
=>PT trên vô nghiệm
Theo hằng đẳng thức đáng nhớ , ta có :
\(x^4+2x^2+1=\left(x^2+1\right)^2\)
Vì \(x^2\ge0\).Nên \(x^2+1\ge1;\Rightarrow x^2+1>0\)
\(\Rightarrow\left(x^2+1\right)^2>0\)
Vậy phương trình vô nghiệm.
Do x^4 và 4x^2 lớn hơn hoặc bằng 0 vs mọi x => x^4 + 4x^2 + 1 > 0 => đa thức f(x) =..... vô nghiệm
a.Ta có : \(^{x^2}\)\(\ge\)0\(\forall x\)
\(\Leftrightarrow x^2+3\ge3\forall x\)
\(\Rightarrow\)Đa thức trên vô nghiệm
a, x^2 + 3
có x^2 > 0 => x^2 + 3 > 3
=> đa thứ trên vô nghiệm
b, x^4 + 2x^2 + 1
x^4 > 0 ; 2x^2 > 0
=> x^4 + 2x^2 > 0
=> x^4 + 2x^2 + 1 > 1
vậy _
c, -4 - 3x^2
= -(4 + 3x^2)
3x^2 > 0 => 3x^2 + 4 > 4
=> -(4 + 3x^2) < 4
vậy_
a) P(x) - Q(x) = \(3x^2+x-2-2x^2-x+3=x^2+1\)
b) \(H\left(x\right)=P\left(x\right)-Q\left(x\right)=x^2+1\) = 0
Vì \(x^2\ge0\Leftrightarrow x^2+1>0\)
=> \(H\left(x\right)=0\) vô nghiệm
có nghiệm mà là x=0 và x=2
x2-x-x = x[x-1-1] = x[x-2]
=> x2-2x = 0
=> 2x = x2
=> x E {0;2}
Sao vô nghiệm
tui lớp 6 nek
tk nha