K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2017

Ta có

- x2 + 4x - 9 \(\le\)- 5

<=> - x2 + 4x - 4 \(\le\)0

<=> - (x - 2)2 \(\le\)0 (đúng)

=> ĐPCM

8 tháng 4 2018

a, Ta có: \(-x^2+4x-9+5=-x^2+4x-4\)

\(=-\left(x^2-4x+4\right)\)

\(=-\left(x-2\right)^2\le0\)

=> \(-x^2+4x-9\le-5\)

b, Ta có: \(x^2-2x+9-8=x^2-2x+1=\left(x-1\right)^2\ge0\)

=> \(x^2-2x+9\ge8\)

a, Ta có: −x2+4x−9+5=−x2+4x−4−x2+4x−9+5=−x2+4x−4

=−(x2−4x+4)=−(x2−4x+4)

=−(x−2)2≤0=−(x−2)2≤0

=> −x2+4x−9≤−5−x2+4x−9≤−5

b, Ta có: x2−2x+9−8=x2−2x+1=(x−1)2≥0x2−2x+9−8=x2−2x+1=(x−1)2≥0

=> x2−2x+9≥8

26 tháng 4 2018

câu b sai đề bb ơi ,-,

a/ \(-x^2+4x-9=-\left(x^2-4x+4\right)-5=-\left(x-2\right)^2-5\)

Có: \(\left(x-2\right)^2\ge0\forall x\Rightarrow-\left(x-2\right)^2\le0\Rightarrow-\left(x-2\right)^2-5\le-5\left(đpcm\right)\)

b/ \(x^2-2x+90=\left(x^2-2x+1\right)+89=\left(x-1\right)^2+89\)

Có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+89\ge89\left(đpcm\right)\)

P/s: b tui sửa đề nhes

9 tháng 4 2018

a) Ta có:      -\(x^2\)+4x - 9
             <=>  - ( \(x^2\)- 4x + 4 ) - 5 
             <=> - ( x - 2 )\(^2\) - 5 
Vì - ( x - 2 )\(^2\)\(\le\)0 <=>  - ( x - 2 )\(^2\) - 5  \(\le\)-5 với mọi x
b) Ta có      x\(^2\)- 2x + 9
            <=> ( x\(^2\) - 2x +1 ) + 8
            <=> ( x - 1 ) \(^2\)+ 8
Vì  ( x - 1 ) \(^2\)\(\ge\) 0 <=> ( x - 1 ) \(^2\)+ 8 \(\ge\) 8 với mọi thực x

12 tháng 6 2020

a,Ta có:\(-x^2+4x-9\)

\(\Leftrightarrow-\left(x^2-4x+4\right)-5\)

\(\Leftrightarrow-\left(x-2\right)^2-5\)

Vì \(-\left(x-2\right)^2\le0\Leftrightarrow-\left(x-2\right)^2-5\le-5\forall x\)

b.Ta có:\(x^2-2x+9\)

\(\Leftrightarrow\left(x^2-2x+1\right)+8\)

\(\Leftrightarrow\left(x-1\right)^2+8\)

Vì \(\left(x-1\right)^2\ge0\Leftrightarrow\left(x-1\right)^2+8\ge8\forall x\)

12 tháng 4 2018

Ta có : 

\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)

Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x 

Chúc bạn học tốt ~ 

23 tháng 4 2017

a.

-x2 + 4x - 9 <= -5

<=> -x2 + 4x - 4 <= 0

<=> -(x2 - 4x + 4) <= 0

<=> -(x - 2)<= 0. Luôn đúng với mọi x

b.

x2 - 2x + 9 >= 8

<=> x2 - 2x + 1 >= 0

<=> (x - 1)2 >= 0. Luôn đúng với mọi x

10 tháng 5 2017

nhỏ hơn hoặc bằng 0 đều đúng nhé

a: Ta có: \(-x^2+4x-5\)

\(=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+4+1\right)\)

\(=-\left(x-2\right)^2-1< 0\forall x\)

4 tháng 9 2021

tiếp đi bạn

 

 

b: Ta có: \(x^4\ge0\forall x\)

\(3x^2\ge0\forall x\)

Do đó: \(x^4+3x^2\ge0\forall x\)

\(\Leftrightarrow x^4+3x^2+3>0\forall x\)

c: Ta có: \(\left(x^2+2x+3\right)=\left(x+1\right)^2+2>0\forall x\)

\(x^2+2x+4=\left(x+1\right)^2+3>0\forall x\)

Do đó: \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)>0\forall x\)

\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)

21 tháng 9 2021

a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1>0\forall x\)

b) \(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\forall x\)

21 tháng 9 2021

mink cảm ơn