K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2016

Dễ thấy các số trên là bình phương các số tự nhiên liên tiếp.

Mà các số chính phương đều không tận cùng bằng 2, 3, 7 và 8

Nên chúng chỉ tận cùng bằng 0 ,1 , 4 , 5 , 6 và 9

Xét từng trường hợp nếu chọn các bộ số tận cùng của các số trên được {1,4,5,6} ; {1;4;5;9};  {1;4;6;9} ; {1;5;6;9} và các hoán vị của các bộ số này. Nhận thấy tổng của các phần tử trong mỗi bộ số đều không tận cùng bằng 7

Vậy có điều phải chứng minh

Dễ thấy các số trên là bình phương các số tự nhiên liên tiếp.

Mà các số chính phương đều không tận cùng bằng 2, 3, 7 và 8

Nên chúng chỉ tận cùng bằng 0 ,1 , 4 , 5 , 6 và 9

Xét từng trường hợp nếu chọn các bộ số tận cùng của các số trên được {1,4,5,6} ; {1;4;5;9};  {1;4;6;9} ; {1;5;6;9} và các hoán vị của các bộ số này. Nhận thấy tổng của các phần tử trong mỗi bộ số đều không tận cùng bằng 7

Vậy có điều phải chứng minh

3 tháng 8 2016

Bài 1:
Theo đầu bài ta có: 
\(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)
Từ đó suy ra:
\(H=a\cdot\left(a+b\right)\cdot\left(a+c\right)\)
\(=a\cdot-c\cdot-b\)
\(=a\cdot b\cdot c\)

\(K=c\cdot\left(c+a\right)\cdot\left(c+b\right)\)
\(=c\cdot-b\cdot-a\)
\(=a\cdot b\cdot c\)
Vậy H = K    ( đpcm )

3 tháng 8 2016

Này bạn, tớ thấy bài 1 đề phải là a + b + c = 0 chứ. Sao lại a + b + b = 0 được

22 tháng 11 2016

a) \(\frac{\left(n+1\right)!}{n!\left(n+2\right)}=\frac{n!\left(n+1\right)}{n!\left(n+2\right)}=\frac{n+1}{n+2}\)

b)\(\frac{n!}{\left(n+1\right)!-n!}=\frac{n!}{n!\left(n+1\right)-n!}=\frac{n!}{n!\left(n+1-1\right)}=\frac{1}{n}\)

c)\(\frac{\left(n+1\right)!-\left(n+2\right)!}{\left(n+1\right)!+\left(n+2\right)!}=\frac{n!\left(n+1\right)-n!\left(n+1\right)\left(n+2\right)}{n!\left(n+1\right)+n!\left(n+1\right)\left(n+2\right)}=\frac{n!\left(n+1\right)\left(1-n-2\right)}{n!\left(n+1\right)\left(1+n+2\right)}=\frac{-n-1}{n+3}\)

( Kí hiệu n!=1.2.3.4...n)

22 tháng 11 2016

cảm ơn bạn nhiều nhiều nhiều lắm

24 tháng 12 2018

kết quả 

lên mạng

24 tháng 12 2018

kết quả 

lên mạng

24 tháng 12 2018

\(n^3+\left(n+1\right)^3+\left(n+2\right)^3\)

\(=n^3+n^3+3n^2+3n+1+n^3+3n^2.2+3n.2^2+2^3\)

\(=3n^3+9n^2+15n+9=3\left(n^3+3n^2+5n+3\right)\)

\(=3\left(n^3+n^2+2n^2+2n+3n+3\right)\)

\(=3\left[n^2\left(n+1\right)+2n\left(n+1\right)+3\left(n+1\right)\right]\)

\(=3\left[\left(n+1\right)\left(n^2+2n\right)+3\left(n+1\right)\right]\)

\(=3n\left(n+1\right)\left(n+2\right)+9\left(n+1\right)\)

Vì n(n+1)(n+2) là tích 3 stn liên tiếp nên tích này chia hết cho 3

=>\(3n\left(n+1\right)\left(n+2\right)⋮9\) mà \(9\left(n+1\right)⋮9\)

=>\(n^3+\left(n+1\right)^3+\left(n+2\right)^3⋮9\)

26 tháng 6 2016

\(3.3^{n-1}\left(6.3^{n+2}+3\right)-2.3^n\left(3^{n+3}-1\right)=405\)

\(\Leftrightarrow18.3^{2n+1}+3.3^n-2.3^{2n+3}+2.3^n=405\)

\(\Leftrightarrow54.3^{2n}+5.3^n-2.3^3.3^{2n}=405\)

\(\Leftrightarrow3^n=81\)

\(\Leftrightarrow n=4\)

17 tháng 2 2017

giải giúp mk với ! huhu khocroi

17 tháng 2 2017

n(n+1)(n+2)