K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MD
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LH
1
KN
17 tháng 2 2020
\(A=5^n\left(5^n+1\right)-6^n\left(3^n+2^n\right)=25^n+5^n-18^n-12^n\)
Ta có: 25≡4 (mod 7) và 18≡4 (mod 7)
\(\Rightarrow25^n\text{≡}4^n\left(mod7\right)\)và \(18^n\text{≡}4\left(mod7\right)\)
\(\Rightarrow25^n-18^n⋮7\)(1)
Chứng minh tương tự, ta được \(5^n-12^n⋮7\)(2)
Từ (1) và (2) suy ra \(25^n+5^n-18^n-12^n⋮7\)
Tương tự như trên ta cũng chứng minh được \(25^n+5^n-18^n-12^n⋮13\)
Mà (7;13) = 1 nên \(25^n+5^n-18^n-12^n⋮91\)
Vậy A chia hết cho 91 với mọi n thuộc N (đpcm)
JG
2
NN
Nguyễn Ngọc Anh Minh
CTVHS
VIP
26 tháng 10 2023
\(3^{5n+2}+3^{5n+1}-3^{5n}=3^{5n}\left(3^2+3-1\right)=11.3^{5n}⋮11\)
TC
0
NH
1