K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2017

a^3 = 3^3

5a = 5 . 3

 ta có : 9 + 15 = 24

vậy 24 chia hết cho 6

A=a3+5a=(a3-a)+6a=a(a-1)(a+1)+6a

Vì a(a-1)(a+1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6 và 6a chia hết cho 6

=> A chia hết cho 6.

16 tháng 12 2016

a^3 + 5a = a^3 - a + 6a

               = a( a^2 - 1) + 6a 

               = a( a-1) ( a+1) + 6a 

nhận xét a,( a-1),(a+1) là 3 số nguyên liên tiếp vì a thuộc Z 

nên trong 3 số có 1 số chia hết cho 3 và ít nhất 1 số chia hết cho 2

mà 2 và 3 nguyên tố cung nhau nên a(a-1)(a+1) chia hết cho 2 x 3 hay chia hết cho 6 

vậy a^3 -a chia hết cho 6 mà 6a chia hết cho 6

nên a^3 -a + 6a chia hết cho 6

hay a^3 + 5a chia hết cho 6 ( đpcm)

2 tháng 9 2017

a^3 + 5a = a^3 - a + 6a

               = a( a^2 - 1) + 6a 

               = a( a-1) ( a+1) + 6a 

nhận xét a,( a-1),(a+1) là 3 số nguyên liên tiếp vì a thuộc Z 

nên trong 3 số có 1 số chia hết cho 3 và ít nhất 1 số chia hết cho 2

mà 2 và 3 nguyên tố cung nhau nên a(a-1)(a+1) chia hết cho 2 x 3 hay chia hết cho 6 

vậy a^3 -a chia hết cho 6 mà 6a chia hết cho 6

nên a^3 -a + 6a chia hết cho 6

hay a^3 + 5a chia hết cho 6 ( đpcm)

22 tháng 9 2016

Xét tổng:

(5a-4b)+4(2a+b)=5a-4b+8a+4b

<=>(5a-4b)+4(2a+b)=13a

Ta có : 13 chia hết cho 13 => 13a chia hết cho 13 với mọi a thuộc Z

=> [(5a-4b)+4(2a+b)] chia hết cho 13                 (1)

Ta có (5a-4b) chia hết cho 13 - Bài cho               (2)

Từ (1) ; (2) => 4(2a+b) chia hết cho 13

mà (4,13) =1

=> (2a+b) chia hết cho 14

Do đó nếu (5a-4b) chia hết cho 13 thì (2a+b) chia hết cho 13

1 tháng 11 2018

a, an+3-an+1=an.a(a2-1)=an(a-1)a(a+1)

Vì (a-1)a(a+1) là tích 3 số tự nhiên liên tiếp

=> (a-1)a(a+1) chia hết cho 2 và 3

Mà (2,3)=1

=>(a-1)a(a+1) chia hết cho 6

=> an(a-1)a(a+1) chia hết cho 6 

=>đpcm

b, a3+5a=(a3-a)+6a=a(a2-1)+6a=(a-1)a(a+1)+6a

CM (a-1)a(a+1) chia hết cho 6

      6a chia hết cho 6

=>(a-1)a(a+1)+6a chia hết cho 6

=>đpcm

c, a3+b3+c3-a-b-c=(a3-a)+(b3-b)+(c3-c)

đến đây dễ rồi, tự làm

6 tháng 7 2016

a) \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(\Rightarrow\left(3^n\cdot3^2+3^n\right)-\left(2^n\cdot2^2+2^n\right)\)

\(\Rightarrow3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(\Rightarrow3^n\cdot10-2^n\cdot5\)

\(\Rightarrow3^n\cdot10-2^{n-1}\cdot\left(2\cdot5\right)\)

\(\Rightarrow10\left(3^n-2^n\right)\) chia hết cho 10

6 tháng 7 2016

b) \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(\Rightarrow3^n\cdot3^3+3^n\cdot3+2^n\cdot2^3+2^n\cdot2^2\)

\(\Rightarrow3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)\)

\(\Rightarrow3^n\cdot30+2^n\cdot12\)

\(\Rightarrow3^n\cdot6\cdot5+2^n\cdot2\cdot6\)

\(\Rightarrow6\left(3^n\cdot5+2^n\cdot2\right)\) chia hết cho 6

25 tháng 9 2017

Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3

=> ĐPCM;