K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 12 2020

1.

\(5=3xy+x+y\ge3xy+2\sqrt{xy}\)

\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+5\right)\le0\Rightarrow xy\le1\)

\(P=\dfrac{\left(x+1\right)\left(x^2+1\right)+\left(y+1\right)\left(y^2+1\right)}{\left(x^2+1\right)\left(y^2+1\right)}-\sqrt{9-5xy}\)

\(P=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy+x+y+2}{x^2y^2+\left(x+y\right)^2-2xy+1}-\sqrt{9-5xy}\)

Đặt \(xy=a\Rightarrow0< a\le1\)

\(P=\dfrac{\left(5-3a\right)^3-3a\left(5-3a\right)+\left(5-3a\right)^2-2a+5-3a+2}{a^2+\left(5-3a\right)^2-2a+1}-\sqrt{9-5a}\)

\(P=\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{2}.2\sqrt{9-5a}\)

\(P\ge\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{4}\left(4+9-5a\right)\)

\(P\ge\dfrac{-29a^3+161a^2-277a+145}{4\left(5a^2-16a+13\right)}=\dfrac{\left(1-a\right)\left(29a^2-132a+145\right)}{4\left(5a^2-16a+13\right)}\)

\(P\ge\dfrac{\left(1-a\right)\left[29a^2+132\left(1-a\right)+13\right]}{4\left(5a^2-16a+13\right)}\ge0\)

\(P_{min}=0\) khi \(a=1\) hay \(x=y=1\)

Hai phân thức của P rất khó làm gọn bằng AM-GM hoặc Cauchy-Schwarz (nó hơi chặt)

NV
26 tháng 12 2020

2.

Đặt \(A=9^n+62\)

Do \(9^n⋮3\) với mọi \(n\in Z^+\) và 62 ko chia hết cho 3 nên \(A⋮̸3\)

Mặt khác tích của k số lẻ liên tiếp sẽ luôn chia hết cho 3 nếu \(k\ge3\)

\(\Rightarrow\) Bài toán thỏa mãn khi và chỉ khi \(k=2\)

Do tích của 2 số lẻ liên tiếp đều không chia hết cho 3, gọi 2 số đó lần lượt là \(6m-1\)  và \(6m+1\)

\(\Leftrightarrow\left(6m-1\right)\left(6m+1\right)=9^n+62\)

\(\Leftrightarrow36m^2=9^n+63\)

\(\Leftrightarrow4m^2=9^{n-1}+7\)

\(\Leftrightarrow\left(2m\right)^2-\left(3^{n-1}\right)^2=7\)

\(\Leftrightarrow\left(2m-3^{n-1}\right)\left(2m+3^{n-1}\right)=7\)

Pt ước số cơ bản, bạn tự giải tiếp

14 tháng 3 2018

Giả sử k=2

thì 

\(2^3=3^2-1^2\)

NV
25 tháng 1

\(\Leftrightarrow\left\{{}\begin{matrix}k^2x-ky=2k\\x+ky=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(k^2+1\right)x=2k+1\\y=kx-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2k+1}{k^2+1}\\y=\dfrac{2k^2+k}{k^2+1}-2=\dfrac{-k}{k^2+1}\end{matrix}\right.\)

\(x+y=-1\Rightarrow\dfrac{2k+1}{k^2+1}+\dfrac{-k}{k^2+1}=-1\)

\(\Rightarrow k+1=-k^2-1\)

\(\Rightarrow k^2+k+2=0\) (vô nghiệm)

Không tồn tại k thỏa mãn yêu cầu

25 tháng 1

Anh giúp em ạ! 

https://hoc24.vn/cau-hoi/limlimits-xrightarrow2-dfrac3x2x-12x2-5x2-cho-minh-hoi-khi-tu-duong-doi-voi-bai-nay-va-mau-dan-den-0-nhung-mau-lon-hon-0-hay-nho-hon-khong-theo-minh-hieu-la-gioi-han-dan-den-2.8768789368559

31 tháng 7 2020

ta có tích từ 3 stn liên tiếp trở lên thì chia hết cho 3

theo đề bài 9n+11 là tích k số tự nhiên liên tiếp mà 9n+11 không chia hết cho 3 nên k=2

đặt 9n+11=a(a+1) với a là số nguyên dương

9n+11=a(a+1) <=> 4.9n+45=4a2+4a+1

<=> (2a+1)2-(2.3n)2=45 <=> (2a+1-2.3n)(2a+1+2.3n)=45

vì a,n nguyên dương và 2a+1+2.3n >=9 nên xảy ra các trường hợp sau

th1: \(\hept{\begin{cases}2a+1+2\cdot3^n=9\left(1\right)\\2+1+2\cdot3^n=5\left(2\right)\end{cases}}\)

từ (1) và (2) ta có 4a+2=14 <=> a=3 => 9n+11=12 <=> 9n=1 <=> n=0 (loại)

th2: \(\hept{\begin{cases}2a+1-2\cdot3^n=15\left(3\right)\\2a+1+2\cdot3^n=3\left(4\right)\end{cases}}\)

từ (3) và (4) ta có 4a+2=18 <=> a=4 => 9n+11=20 <= 9n=9 <=> n=1 (tm)

th3: \(\hept{\begin{cases}2a+1-2\cdot3^n=45\left(5\right)\\2a+1+2\cdot3^n=1\left(6\right)\end{cases}}\)

từ (5) và (6) ta có 4a+2=46 <=> a=11 => 9n+11=132 <=> 9n=121 => không tồn tại n

vậy n=1

1 tháng 8 2020

Vì \(9^n+11⋮̸3\)nên k<3 => k=2 (k>1) (với n thuộc N*)

Ta có: \(9^n-1⋮\left(9-1\right)\Leftrightarrow9^n-1⋮8\Leftrightarrow9^n-1⋮4\Leftrightarrow9^n+11⋮4\)

Mà \(9^n+11\)là tích của hai STN liên tiếp nên 1 trong 2 số bằng 4, số còn lại là 5 (vì 9^n+11 không chia hết cho 3)

Từ đó, ta có 9^n+11=4*5=20 => 9^n=9 => n=1 

NGUUYỄN NGỌC MINH viết sai đề rồi

23 tháng 5 2016

đồng ý cả hai tay