Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(_{\Delta ABC\approx\Delta DEM}\) theo tỷ số k và có 2 đường cao, 2 cạnh tương ứng là h,a ; h',a'
Ta có: \(\frac{\Delta ABC}{\Delta DEM}=\frac{ah}{2}\div\frac{a'h'}{2}=\frac{ah}{a'h'}=\frac{a}{a'}.\frac{h}{h'}=k.k=k^2\)
=> ĐPCM
hình 49
Sabc=1/2ah.bc
Sa'b'c'=1/2a'h'.b'c'
tính tỉ sô Sabc/Sa'b'c=ah.bc/a'h'.b'c'
tam giác abc đồng dạng với tam giác a'b'c' theo tỉ số đồng dạng k suy ra bc/b'c'=ah/a'h'=k
suy ra Sabc/Sa'b'c'=bc/b'c' . ah/a'h'=k.k=k^2
suy ra đpcm
Tham khảo: Toán - [Lớp 8] Chứng minh tỉ số diện tích của hai tam giác đồng dạng thì bằng bình phương tỉ số đồng dạng. | Cộng đồng Học sinh Việt Nam - HOCMAI Forum
Do tỉ số diện tích bằng bình phương tỉ số đồng dạng nên ta có :
\(\frac{S_{ABC}}{S_{A'B'C'}}=\left(\frac{2}{7}\right)^2=\frac{2^2}{7^2}=\frac{4}{49}\)
Vậy tỉ số diện tích tam giác ABC và tam giác A'B'C' là 4/49
Giả sử △ABC đồng dạng với △A′B′C′ thoeo tỷ số k có hai đường cao, hai cạnh tương ứng là h,avà h′;a′
Như vậy ta sẽ có: \(\dfrac{S_{ABC}}{S_{A'B'C'}}=\dfrac{ah}{a'h'}=\dfrac{a}{a'}\times\dfrac{h}{h'}=k.k=k^2\)
Nên ta có đpcm
Giả sử tam giác ABC đồng dạng với tam giác A′B′C′ theo tỷ số a có hai đường cao và hai cạnh tương ứng là b,c và b',c'
\(\Rightarrow\)\(\frac{b}{b'}=\frac{c}{c'}=a\)
Như vậy ta sẽ có\(\frac{S_{ABC}}{S_{A'B'C'}}\)\(=\frac{b.c}{b'.c'}\)\(=\frac{b}{b'}.\frac{c}{c'}\)\(=a.a\)\(=a^2\)
Vậy tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng.