K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2020

                                                                  Bài giải

Ta có : 

\(\hept{\begin{cases}\sqrt{2}\\\sqrt{3}\\\sqrt{5}\end{cases}}\text{ là số vô tỉ}\)

\(\Rightarrow\text{ }\sqrt{2}+\sqrt{3}+\sqrt{5}\) là số vô tỉ

((( Không biết có phải vậy không ))))

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

4 tháng 9 2019

a. Giả sử \(\sqrt{3}\) không phải là số vô tỉ. Khi đó tồn tại các số nguyên a và b sao cho √3 = a/b với b > 0. Hai số a và b không có ước chung nào khác 1 và -1.

Ta có: (√3 )2 = (a/b )2 hay a2 = 3b2 (1)

Kết quả trên chứng tỏ a chia hết cho 3, nghĩa là ta có a = 3c với c là số nguyên.

Thay a = 3c vào (1) ta được: (3c)2 = 3b2 hay b2 = 3c2

Kết quả trên chứng tỏ b chia hết cho 3.

Hai số a và b đều chia hết cho 3, trái với giả thiết a và b không có ước chung nào khác 1 và -1.

Vậy √3 là số vô tỉ.

b. * Giả sử 5√2 là số hữu tỉ a, nghĩa là: 5√2 = a

Suy ra: √2 = a / 5 hay √2 là số hữu tỉ.

Điều này vô lí vì √2 là số vô tỉ.

Vậy 5√2 là số vô tỉ.

* Giả sử 3 + √2 là số hữu tỉ b, nghĩa là:

3 + √2 = b

Suy ra: √2 = b - 3 hay √2 là số hữu tỉ.

Điều này vô lí vì √2 là số vô tỉ.

Vậy 3 + √2 là số vô tỉ.

2 tháng 8 2017

Ta có:

\(\frac{1}{\sqrt{n}-\sqrt{n+1}}=-\sqrt{n+1}-\sqrt{n}\)

\(\Rightarrow P=\frac{1}{\sqrt{2}-\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{4}}+...+\frac{1}{\sqrt{1992}-\sqrt{1993}}\)

\(=-\sqrt{2}-\sqrt{3}+\sqrt{3}+\sqrt{4}-\sqrt{4}-\sqrt{5}+...+\sqrt{1992}+\sqrt{1993}\)

\(=\sqrt{1993}-\sqrt{2}\)

Vậy P là số vô tỉ

2 tháng 8 2017

sao lại biết \(\sqrt{1993}-\sqrt{2}\)là số vô tỉ

11 tháng 7 2023

Giả sử \(2\sqrt{2}+\sqrt{3}=x\left(x\in Q\right)\)

\(\Leftrightarrow\left(2\sqrt{2}+\sqrt{3}\right)^2=x^2\\ \Leftrightarrow11+4\sqrt{6}=x^2\\ \Leftrightarrow\sqrt{6}=\dfrac{x^2-11}{4}\)

Vì \(\sqrt{6}\) là số vô tỉ nên \(\dfrac{x^2-11}{4}\) là số vô tỉ \(\Rightarrow\) \(x^2\) là số vô tỉ, \(\Rightarrow x\) là số vô tỉ (vô lý)

Vậy \(2\sqrt{2}+\sqrt{3}\) là số vô tỉ

Giả sử \(\sqrt{3}-\sqrt{2}=x\left(x\in Q\right)\)  

\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)^2=x^2\\ \Rightarrow5-2\sqrt{6}=x^2\\ \Rightarrow\sqrt{6}=\dfrac{5-x^2}{2}\)

Vì \(\sqrt{6}\) là số vô tỉ nên \(\dfrac{5-x^2}{2}\Rightarrow\) \(x^2\)là số vô tỉ, \(\Rightarrow x\) là số vô tỉ (vô lý)

Vậy \(\sqrt{3}-\sqrt{2}\) là số vô tỉ

27 tháng 10 2016

căn 2 là svt , căn 3 là svt 

=>căn2 - căn 3 là số vô tỉ 

=> căn 2 - căn 3 + 2 là số vô tỉ 

có gì ko hiểu thì hỏi riêng mình nha

23 tháng 7 2021

Giả sử \(\sqrt{2}+\sqrt{3}\) là số hữu tỉ ⇒ \(\left(\sqrt{2}+\sqrt{3}\right)^2\) ∈ Q ⇒ 2 + 2.\(\sqrt{2}.\sqrt{3}\) + 3 ∈ Q

Mà 2 và 3 ∈ Q ⇒ 2.\(\sqrt{2}.\sqrt{3}\)  ∈ Q ⇒ \(\sqrt{2}.\sqrt{3}\) ∈ Q ⇒ \(\sqrt{6}\) ∈ Q (Vô lý)

Giả sử \(\sqrt{3}-\sqrt{2}\) là số hữu tỉ

nên \(\sqrt{3}-\sqrt{2}=\dfrac{p}{q}\left(q\ne0\right)\)

\(\Leftrightarrow\dfrac{p^2}{q^2}=5-2\sqrt{6}\)

\(\Leftrightarrow\dfrac{p^2}{q^2}-5=-2\sqrt{6}\)(vô lý)

Vậy: \(\sqrt{3}-\sqrt{2}\) là số vô tỉ

1 tháng 7 2021

Link : Chứng minh rằng căn2 +căn3 là số vô tỉ 

26 tháng 7 2016

căn 2 vô tỉ => 1+ căn 2 vô tỉ => căn của  (1+ căn 2) vô tỉ........cứ như vậy là ra

29 tháng 7 2016

nếu có dấu 3 chấm sau sô 2 cuối cùng thì làm ntn v ak?