Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Toán lớp 6Phân tích thành thừa số nguyên tố
Đinh Tuấn Việt 20/05/2015 lúc 22:51
Theo đề bài ta có:
a = p1m . p2n $\Rightarrow$⇒ a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.
nguyên 24/05/2015 lúc 16:50
Theo đề bài ta có:
a = p1m . p2n $$
a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$$
m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 0
Captain America
Ta xét : Các số nguyên tố nhỏ hơn 10 là : 2;3;5;7
Như vậy r thuộc {2;3;5;7}
Với r = 2 => A = 32 chia hết cho 2 < Loại>
Với r = 3 => A = 33 chia hết cho 3 < Loại>
Với r = 5 => A = 35 chia hết cho 5 < Loại>
Với r=7 => A = 37 < Chọn >
Vậy A = 37
b)Vì bảng ô vuông có kích thước 5x5 nên có tất cả:5 hàng,5 cột,2 đường chéo nên có tất cả 12 tổng.
Do khi điền vào các ô là các số 0,1,-1 nên mỗi tổng(S) là một số nguyên thỏa mãn:−5≤S≤5
\(⇒\)có 11 giá trị trong khi đó có 12 tổng nên theo nguyên lý Đi-rích-lê(hay còn gọi là chuồng thỏ) thì tồn tại ít nhất 2 tổng có giá trị bằng nhau.
a)Nếu p chẵn => p=2 => p^2 + 2^p = 2^2 + 2^2 =8 (loại)
Nếu p lẻ :
+) p\(⋮\)3 => p=3 => p^2 + 2^p =17 (thỏa)
+)p ko chia hết cho 3. Đặt p=3k\(\pm\)1
p^2=(3k\(\pm\)1)^2=9k^2 \(\pm\)6k+1=3(3k^2 \(\pm\)2k)+1 chia 3 dư 1
Còn: 2^p\(\equiv\)(-1)^p\(\equiv\)-1 (mod 3) do p lẻ
Do đó:p^2+2^p=1+(-1)=0 (mod 3)
Mà p^2 + 2^p >3 nên ko thể là số nguyên tố (loại)
Vậy p=3 thì 2^p + p^2 là snt