Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:
- Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
- Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.
Ta có: Đặt a = 2013
Khi đó, ta có: A = a(a + 2)(a + 4)(a + 6) + 16
A = [a(a + 6)][(a + 2)(a + 4)] + 16
A = (a2 + 6a)(a2 + 6a + 8) + 16
A = (a2 + 6a) + 8(a2 + 6a) + 16
A = (a2 + 6a + 4)2
=> A là số chính phương
=> bình phương của 20132 + 6.2013 + 4 = 4064251
(biến đổi trực tiếp luôn cũng được, không cần phải đặt)
Ta có: \(n^6-n^4+2n^3+2n^2=n^2\left(n^4-n^2+2n+2\right)=n^2\left[n^2\left(n-1\right)\left(n+1\right)+2\left(n+1\right)\right]\)
\(=n^2\left(n+1\right)\left(n^3-n^2+2\right)=n^2\left(n+1\right)\left(n^3+n^2-2n^2+2\right)=n^2\left(n+1\right)\left[n^2\left(n+1\right)-2\left(n+1\right)\left(n-1\right)\right]\)\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)
Để \(A\)là số chính phương thì \(n^2-2n+2\)là số chính phương.
Ta có: \(n^2-2n+2< n^2\)(do \(n>1\))
\(n^2-2n+2=\left(n-1\right)^2+1>\left(n-1\right)^2\)
\(\Rightarrow\left(n-1\right)^2< n^2-2n+2< n^2\)nên \(n^2-2n+2\)không thể là số chính phương.
Vậy \(A=n^6-n^4+2n^3+2n^2\)không là số chính phương.
1/ Xét \(\left(n^{1010}\right)^2=n^{2020}< n^{2020}+1=\left(n^{1010}+1\right)^2-2n^{1010}< \left(n^{1010}+1\right)^2\)
Vì \(n^{2020}+1\)nằm ở giữa 2 số chính phương liên tiếp là \(\left(n^{1010}\right)^2\)và \(\left(n^{1010}+1\right)^2\)nên không thể là số chính phương.
2/ Mình xin sửa đề là 1 tí đó là tìm \(n\inℤ\)để A là số chính phương nha bạn, vì A hoàn toàn có thể là số chính phương
\(A>n^4+2n^3+n^2=\left(n^2+n\right)^2,\forall n\inℤ\)
\(A< n^4+n^2+9+2n^3+6n^2+6n=\left(n^2+n+3\right)^2,\forall n\inℤ\)
Vì A bị kẹp giữa 2 số chính phương là \(\left(n^2+n\right)^2,\left(n^2+n+3\right)^2\)nên A là số chính phương khi và chỉ khi:
+) \(A=\left(n^2+n+1\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+1+2n^3+2n^2+2n\)
\(\Leftrightarrow n^2+n-6=0\Leftrightarrow\orbr{\begin{cases}n=2\\n=-3\end{cases}}\)
+) \(A=\left(n^2+n+2\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+4+2n^3+4n^2+4n\)
\(\Leftrightarrow3n^2+3n-3=0\Leftrightarrow x=\frac{-1\pm\sqrt{5}}{2}\notinℤ\)---> Với n=-3;2 thì A là số chính phương.
3/ Bằng phản chứng giả sử \(n^3+1\)là số chính phương:
---> Đặt: \(n^3+1=k^2,k\inℕ^∗\Rightarrow n^3=k^2-1=\left(k-1\right)\left(k+1\right)\)
Vì n lẻ nên (k-1) và (k+1) cùng lẻ ---> 2 số lẻ liên tiếp luôn nguyên tố cùng nhau
Lúc này (k-1) và (k+1) phải là lập phương của 2 số tự nhiên khác nhau
---> Đặt: \(\hept{\begin{cases}k-1=a^3\\k+1=b^3\end{cases},a,b\inℕ^∗}\)
Vì \(k+1>k-1\Rightarrow b^3>a^3\Rightarrow b>a\)---> Đặt \(b=a+c,c\ge1\)
Có \(b^3-a^3=\left(k+1\right)-\left(k-1\right)\Leftrightarrow\left(a+c\right)^3-a^3=2\Leftrightarrow3ca^2+3ac^2+c^3=2\)
-----> Quá vô lí vì \(a,c\ge1\Rightarrow3ca^2+3ac^2+c^3\ge7\)
Vậy mâu thuẫn giả thiết ---> \(n^3+1\)không thể là số chính phương với n lẻ.
Ta có \(5!\equiv0\left(mod5\right)...;2020!\equiv0\left(mod5\right)\)
Mà \(4!+2013=2037\equiv2\left(mod5\right)\)
=> A\(\equiv2\left(mod5\right)\)
Mà số chính phương khi chia cho 5 chỉ có số dư là +-1
=> A k là SCP (ĐPCM)
^_^
Ta thấy 4!=1*2*3*4 =24
=> 2013+4! tận cùng là 7
5!+6!+..+2020! luôn luôn tận cùng là 0
=> Tổng tận cùng là 7
=> Tổng ko là số chính phương
A = 11.....1 ( 2013 chữ số 1) × 100....05 ( 2012 chữ số 0) - 66....6 ( 2013 chữ số 6)
A = 11.....1 ( 2013 chữ số 1) × 100....05 ( 2012 chữ số 0) - 6 × 11....1 ( 2013 chữ số 6)
A = 11.....1 ( 2013 chữ số 1) × ( 100....05 ( 2012 chữ số 0) - 6)
A = 11.....1 ( 2013 chữ số 1) × 99....9 ( 2013 chữ số 9)
A = 11....1 ( 2013 chữ số 1) × 3 × 33....3 ( 2013 chữ số 3)
A = 33....3 ( 2013 chữ số 3) × 33....3 ( 2013 chữ số 3)
A = 33....32 ( 2013 chữ số 3)
Đặt \(P=n^6-n^4+2n^3+2n^2\) thì
\(n^6-n^4+2n^3+2n^2=n^2\left(n^4-n^2+2n+2\right)=n^2\left[n^2\left(n-1\right)\left(n+1\right)+2\left(n+1\right)\right]\)
\(=n^2\left(n+1\right)\left(n^3-n^2+2\right)=n^2\left(n+1\right)\left[\left(n^3+1\right)-\left(n^2-1\right)\right]\)
\(=n^2\left(n+1\right)\left[\left(n+1\right)\left(n^2-n+1\right)-\left(n+1\right)\left(n-1\right)\right]\)
\(P=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)
Với \(n\in N;\) \(n>1\), ta có:
\(n^2-2n+2=\left(n-1\right)^2+1>\left(n-1\right)^2\)
và \(n^2-2n+2=n^2-2\left(n-1\right)\text{<}n^2\)
Theo đó, \(\left(n-1\right)^2\text{< }n^2-2n+2\text{< }n^2\)
Mặt khác, \(\left(n-1\right)^2\) và \(n^2\) là hai số chính phương liên tiếp
Do đó, \(n^2-2n+2\) không thể là một số chính phương.
Vậy, \(P\) không là số chính phương với mọi \(n\in N;\) \(n>1\).
Đặt \(P=n^6-n^4+2n^3+2n^2\) thì
\(n^6-n^4+2n^3+2n^2=n^2\left(n^4-n^2+2n+2\right)=n^2\left[n^2\left(n-1\right)\left(n+1\right)+2\left(n+1\right)\right]\)
\(=n^2\left(n+1\right)\left(n^3-n^2+2\right)=n^2\left(n+1\right)\left[\left(n^3+1\right)-\left(n^2-1\right)\right]\)
\(=n^2\left(n+1\right)\left[\left(n+1\right)\left(n^2-n+1\right)-\left(n+1\right)\left(n-1\right)\right]\)
\(P=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)
Với \(n\in N;\) \(n>1\), ta có:
\(n^2-2n+2=\left(n-1\right)^2+1>\left(n-1\right)^2\)
và \(n^2>n^2-2\left(n-1\right)=n^2-2n+2\)
Theo đó, \(n^2>n^2-2n+2>\left(n-1\right)^2\)
Mặt khác, \(\left(n-1\right)^2\) và \(n^2\) là hai số chính phương liên tiếp
Do đó, \(n^2-2n+2\) không thể là một số chính phương.
Vậy, \(P\) không là số chính phương với mọi \(n\in N;\) và \(n>1\)
mk chưa học giai thừa ,xin lỗi nha