Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Ta có:
\(x^4+y^4\ge\dfrac{1}{2}\left(x^2+y^2\right)^2=\dfrac{1}{2}\left(x^2+y^2\right)\left(x^2+y^2\right)\ge\left(x^2+y^2\right)xy\)
Đặt vế trái của BĐT cần chứng minh là P, áp dụng bồ đề vừa chứng minh ta có:
\(P\le\dfrac{a.abc}{bc\left(b^2+c^2\right)+a.abc}+\dfrac{b.abc}{ca\left(c^2+a^2\right)+b.abc}+\dfrac{c.abc}{ab\left(a^2+b^2\right)+c.abc}\)
\(P\le\dfrac{a^2.bc}{bc\left(a^2+b^2+c^2\right)}+\dfrac{b^2.ac}{ca\left(a^2+b^2+c^2\right)}+\dfrac{c^2.ab}{ab\left(a^2+b^2+c^2\right)}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
2.
\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}=1\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{2}{3}\)
Lời giải cho bài của bạn ở đây nhé! http://olm.vn/hoi-dap/question/479780.html
\(x^4+y^4+z^4\ge\frac{1}{3}\left(x^2+y^2+z^2\right)^2\ge\frac{1}{27}\left(x+y+z\right)^4=\frac{16}{27}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{2}{3}\)
Lời giải:
Ta có: \(x+y+z=0\Rightarrow (x+y+z)^2=0\)
\(\Leftrightarrow x^2+y^2+z^2+2(xy+yz+xz)=0\Leftrightarrow xy+yz+xz=\frac{-a^2}{2}\)
Để ý rằng:
\(x^4+y^4+z^4=(x^2+y^2+z^2)^2-2(x^2y^2+y^2z^2+z^2x^2)\)
\(=a^4-2[(xy+yz+xz)^2-2xyz(x+y+z)]\)
\(=a^4-2(xy+yz+xz)^2=a^4-2.\frac{a^4}{4}=\frac{a^4}{2}\)
Cho 2 tập hợp A và B. Biết tập hợp B khác rỗng, số phần tử của tập B gấp đôi số phần tử của tập A∩B và A∪B có 10 phần tử. Hỏi tập A và B có bao nhiêu phần tử? Hãy xét các trường hợp xảy ra và dùng biểu đồ Ven minh họa?