Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Lưu Thanh Vy - Toán lớp 8 - Học toán với OnlineMath
Em tham khaoe link trên.
Đặt đa thức là M
\(\Rightarrow M=n^2\left(n^6-n^4-n^2+1\right)\)
\(\Rightarrow M=n^2\left[n^4\left(n^2-1\right)-\left(n^2-1\right)\right]\)
\(\Rightarrow M=n^2\left(n^2-1\right)\left(n^4-1\right)\)
\(\Rightarrow M=n\left(n-1\right)\left(n+1\right)n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\left(n-1\right)\left(n+1\right)\)
Ta có
n(n - 1)(n+1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 3
\(\Rightarrow\left[n\left(n-1\right)\left(n+1\right)\right]\left[n\left(n-1\right)\left(n+1\right)\right]\) chia hết cho 9
=> M chia hết cho 9
Mặt khác
Vì n là số lẻ nên n - 1 và n+1 là số chẵn
=> (n - 1)(n+1) chia hết cho 8
\(n\left(n-1\right)\left(n+1\right)n\left(n-1\right)\left(n+1\right)\left(n+1\right)\left(n-1\right)\) chia hết cho 128
=> M chia hết cho 128
Mà (9;128)=1
=> M chia hết cho 9x128=1152 ( đpcm )
A = n^2 ( n+ 3 ) - ( n+ 3 )
= ( n^2 - 1 )(n+ 3 )
= ( n+ 1 )(n- 1 )(n + 3)
Vì n lẻ => n = 2k+ 1 thay vào ta có :
A = ( 2k + 1 + 1 )(2k+1 - 1 )(2k + 1 + 3) = (2k+2).2k (2k+4) = 2(k+1).2k . 2(k+2) = 8k(k+1)(k+2)
Luôn luôn chia hết cho 8 mới mọi n lẻ
=> A chia hết cho 8
Bài giải :
8.1 x+y=xy
⇒x-xy+y=0
⇒x(1-y)+(y-1)+1=0
⇒(x-1)(1-y)+1=0
⇒(x-1)(y-1)-1=0
⇒(x-1)(y-1)=1
⇒x-1, y-1 là ước của 1
⇒x-1=1,y-1=1 hoặc x-1=-1,y-1=-1
⇒(x;y)=(2;2),(0;0)
8.3. 5xy-2y²-2x²+2=0
⇔(x-2y)(y-2x)+2=0
⇔(x-2y)(2x-y)=2
⇒x-2y và 2x-y là ước của 2
Đặt \(P=111...111222...222\), ta có:
\(P=111...111222...222\) (có \(100\) số \(1\) và \(100\) số \(2\) )
\(=111...111000...000+222...222\) (có \(100\) số \(1\), \(100\) số \(0\) và \(100\) số \(2\) )
\(=111...111.10^{100}+2.111...111\)
\(P=111...111\left(10^{100}+2\right)\)
Đặt \(111...111=k\), \(\Rightarrow\) \(9k=999...999\) (có \(100\) số \(9\) ) nên \(9k+1=1000...000=10^{100}\)
Do đó, \(P=k\left(9k+1+2\right)=k\left(9k+3\right)=3k\left(3k+1\right)\)
Mà \(3k\) và \(3k+1\) lại là \(2\) số tự nhiên liên tiếp nên suy ra điều phải chứng minh.
\(n^4-1=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
Vì n là số tự nhiên lẻ \(\Rightarrow n=2k+1\left(k\inℕ\right)\)
\(\Rightarrow n^4-1=\left(2k+1-1\right)\left(2k+1+1\right)\left(n^2+1\right)\)
\(=2k.\left(2k+2\right)\left(n^2+1\right)=4k\left(k+1\right)\left(n^2+1\right)\)
Vì \(k\)và \(k+1\)là 2 số tự nhiên liên tiếp \(\Rightarrow k\left(k+1\right)⋮2\)
\(\Rightarrow4k\left(k+1\right)⋮8\)\(\Rightarrow n^4-1⋮8\)