K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

A=\(11...1\) (2n chữ số 1)+11...1(n+1 số 1) +66.6 (n số ^) +8

=\(\frac{10^{2n}-1}{9}+\frac{10^{n+1}-1}{9}+6\cdot11...1\) (n số 1) +8

=\(\frac{10^{2n}-1}{9}+\frac{10^{n+1}-1}{9}+6\cdot\frac{10^n-1}{9}+8\)

=\(\frac{10^{2n}-1+10^n\cdot10-1+6\cdot10^n-6+72}{9}\)

=\(\frac{10^{2n}+16\cdot10^n+64}{9}\)

=\(\frac{\left(10^n+8\right)^2}{9}\)

=\(\left(\frac{\left(10^n+8\right)}{3}\right)^2\)

Ta thấy: 10+8 có tổng các chữ số =9

=> 10n+8 chia hết cho 3 => 10n +8 thuộc Z

=>\(\left(\frac{\left(10^n+8\right)}{3}\right)^2\)thuộc Z

=> A là số chính phương

10 tháng 5 2015

chua chac tan cung la cac so do da la so chinh phuong

3 tháng 4 2020

1. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

8 tháng 1 2017

\(A=n^2\left(n^4-n^2+2n+2\right)=n^2\left(n^2+2n+1\right)\left(n^2-2n+2\right)\)

\(A=n^2.\left(n+1\right)^2.\left[\left(n-1\right)^2+1\right]\) có \(\left(n-1\right)^2+1\) chỉ là số CP phương khi n=1

Vậy với n>1 A không thể Cp

b1,    theo mình thì tìm số lần xuất hiện của các số từ 1 đến 9,sau đó cộng các chữ số lại rồi chia 3 dư 2

=>ko phải là scp

b2,

28+211+2n=2304+2n là số chính phương

mà 2304 chia hết cho 3=>2n chia 3 dư 1

<=>2n=22k=4k

<=>2304+4k là số chính phương

đặt 2304+4k=a2

<=>(a-2k)(a+2k)=2304

đến đây thì dễ rồi

9 tháng 9 2017

Bài 2:

Mình áp dụng cách trong thi casio nhé;

\(2^8+2^{11}+2^n=2034+2^n.\)

Đặt \(2034+2^n=y^2\Leftrightarrow2^n=\left(y-48\right)\left(y+48\right)\)

Đặt \(2^n=2^{p.q}\left(p>q\right)\)

\(\Leftrightarrow2^p=y+48;2^q=y-48\)

\(\Leftrightarrow2^p-2^q=96\Leftrightarrow2^q.\left(2^{p-q}-1\right)=2^5.3\)

\(\Rightarrow q=5,p=7\Rightarrow q+p=n=12\)

Vậy n=12