Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CMR số sau là số chính phương
A = 11...1(2n chữ số 1) + 11...1(n+1 chữ số 1) + 66...6(n chữ số 6) + 8
A=\(11...1\) (2n chữ số 1)+11...1(n+1 số 1) +66.6 (n số ^) +8
=\(\frac{10^{2n}-1}{9}+\frac{10^{n+1}-1}{9}+6\cdot11...1\) (n số 1) +8
=\(\frac{10^{2n}-1}{9}+\frac{10^{n+1}-1}{9}+6\cdot\frac{10^n-1}{9}+8\)
=\(\frac{10^{2n}-1+10^n\cdot10-1+6\cdot10^n-6+72}{9}\)
=\(\frac{10^{2n}+16\cdot10^n+64}{9}\)
=\(\frac{\left(10^n+8\right)^2}{9}\)
=\(\left(\frac{\left(10^n+8\right)}{3}\right)^2\)
Ta thấy: 10n +8 có tổng các chữ số =9
=> 10n+8 chia hết cho 3 => 10n +8 thuộc Z
=>\(\left(\frac{\left(10^n+8\right)}{3}\right)^2\)thuộc Z
=> A là số chính phương
1. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
\(A=n^2\left(n^4-n^2+2n+2\right)=n^2\left(n^2+2n+1\right)\left(n^2-2n+2\right)\)
\(A=n^2.\left(n+1\right)^2.\left[\left(n-1\right)^2+1\right]\) có \(\left(n-1\right)^2+1\) chỉ là số CP phương khi n=1
Vậy với n>1 A không thể Cp
b1, theo mình thì tìm số lần xuất hiện của các số từ 1 đến 9,sau đó cộng các chữ số lại rồi chia 3 dư 2
=>ko phải là scp
b2,
28+211+2n=2304+2n là số chính phương
mà 2304 chia hết cho 3=>2n chia 3 dư 1
<=>2n=22k=4k
<=>2304+4k là số chính phương
đặt 2304+4k=a2
<=>(a-2k)(a+2k)=2304
đến đây thì dễ rồi
Bài 2:
Mình áp dụng cách trong thi casio nhé;
\(2^8+2^{11}+2^n=2034+2^n.\)
Đặt \(2034+2^n=y^2\Leftrightarrow2^n=\left(y-48\right)\left(y+48\right)\)
Đặt \(2^n=2^{p.q}\left(p>q\right)\)
\(\Leftrightarrow2^p=y+48;2^q=y-48\)
\(\Leftrightarrow2^p-2^q=96\Leftrightarrow2^q.\left(2^{p-q}-1\right)=2^5.3\)
\(\Rightarrow q=5,p=7\Rightarrow q+p=n=12\)
Vậy n=12