Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kí hiệu: a chia hết cho b được kí hiệu là a || b
Chứng minh \(A=a\left(a+2\right)\left(25a^2-1\right)\text{ || }24\)
Hay A || 3 và A || 8.
+ Chứng minh A || 3
\(A=a\left(a+2\right)\left(5a+1\right)\left(5a-1\right)\)
Nếu a = 3k (k nguyên) thì A || 3
Nếu a = 3k + 1 thì a + 2 = 3k + 3 = 3.(k+1) || 3 nên A || 3
Nếu a = 3k + 2 thì 5a - 1 = 5.(3k + 2) - 1 = 3.(5k + 3) || 3 nên A || 3
+Chứng minh A || 8
Nếu a = 2k thì a.(a + 2) = 2k.(2k + 2) = 4k.(k + 1)
Mà k.(k + 1) || 2 nên 4k.(k + 1) || 8 nên A || 8
Nếu a = 2k + 1, a có 2 dạng là 4k + 1 và 4k + 3
Nếu a = 4k + 1 thì (5a - 1).(5a + 1) = (20k + 4).(20k + 6) = 8.(5k + 1).(10k + 3) || 8 nên A || 8
Nếu a = 4k + 3 thì (5a - 1).(5a + 1) = (20k + 14).(20k + 16) = 8.(10k + 7).(5k + 4) || 8 nên A || 8
\(a^2-1=?\)
\(\Rightarrow a=2-1=1\)
vay a =\(a^1\)
do do 1/a
Bài 1:
a) P=(a+5)(a+8) chia hết cho 2
Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Vậy P luôn chia hết cho 2 với mọi a
b) Q= ab(a+b) chia hết cho 2
Nếu a chẵn => ab(a+b) chia hết cho 2
Nếu b chẵn => ab(a+b) chia hết cho 2
Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2
Vậy Q luôn chia hết cho 2 với mọi a và b
bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).
Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10 (1)
ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2
=> 5n(n-1)n(n+1) chia hết cho 10 (2)
Từ (1) và (2) => n5- n chia hết cho 10