Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 272 , 273 Sách nâng cao và phát triển toán 8 tập 1 trang 71, bài tương tự đấy
\(\text{Ta có :}\)
\(x^{8n}+x^{4n}+1=x^{8n}+2x^{4n}+1-x^{4n}\)
\(=\left(x^{4n}+1\right)^2-\left(x^{2n}\right)^2\)
\(=\left(x^{4n}-x^{2n}+1\right)\left(x^{4n}+x^{2n}+1\right)\)
\(\text{Ta lại có :}\)
\(x^{4n}+x^{2n}+1=x^{4n}+2x^{2n}+1-x^{2n}\)
\(=\left(x^{2n}+1\right)^2-\left(x^n\right)^2=\left(x^{2n}-x^n+1\right)\left(x^{2n}+x^n+1\right)\)
\(\Rightarrow x^{8n}+x^{4n}+1=\left(x^{4n}-x^{2n}+1\right)\left(x^{2n}-x^n+1\right)\left(x^{2n}+x^n+1\right)\)
\(\Rightarrow x^{8n}+x^{4n}+1⋮x^{2n}+x^n+1\)
\(x^{3m+1}+x^{3n+2}+1\\ =x^{3m+1}+x^{3n+2}+1-x-x^2+x+x^2\\ =\left(x^{3m+1}-x\right)+\left(x^{3n+2}-x^2\right)+\left(x^2+x+1\right)\\ =x\left(x^{3m}-1\right)+x^2\left(x^{3n}-1\right)+\left(x^2+x+1\right)\\ =\left(x^{3m}-1\right)\left(x+x^2\right)+\left(x^2+x+1\right)\\ =\left[\left(x^3\right)^m-1\right]\left(x+x^2\right)+\left(x^2+x+1\right)\\ =\left(x^3-1\right)S\left(x+x^2\right)+\left(x^2+x+1\right)\\ =S\left(x-1\right)\left(x^2+x+1\right)\left(x+x^2\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left[S\left(x-1\right)\left(x+x^2\right)+1\right]⋮\left(x^2+x+1\right)\forall m;n\)
Ta có: \(x^{8n}+x^{4n}+1=x^{8n}+2x^{4n}+1-x^{4n}=\left(x^{4n}+1\right)^2-\left(x^{2n}\right)^2\)
\(=\left(x^{4n}+x^{2n}+1\right)\left(x^{4n}-x^{2n}+1\right)=\left(x^{4n}+2x^{2n}+1-x^{2n}\right)\left(x^{4n}-x^{2n}+1\right)=\left[\left(x^{2n}+1\right)-\left(x^n\right)^2\right]\left(x^{4n}-x^{2n}+1\right)=\left(x^{2n}+1-x^n\right)\left(x^{2n}+1+x^n\right)\left(x^{4n}-x^{2n}+1\right)\)=> \(x^{8n}+x^{4n}+1⋮x^{2n}+x^n+1\left(\forall x\right)\)
\(\text{a.Ta có :}\)
\(x^{8n}+x^{4n}+1=x^{8n}+2x^{4n}+1-x^{4n}\)
\(=\left(x^{4n}+1\right)^2-\left(x^{2n}\right)^2\)
\(=\left(x^{4n}-x^{2n}+1\right)\left(x^{4n}+x^{2n}+1\right)\)
\(\text{Ta lại có :}\)
\(x^{4n}+x^{2n}+1=x^{4n}+2x^{2n}+1-x^{2n}\)
\(=\left(x^{2n}+1\right)^2-\left(x^n\right)^2=\left(x^{2n}-x^n+1\right)\left(x^{2n}+x^n+1\right)\)
\(\Rightarrow x^{8n}+x^{4n}+1=\left(x^{4n}-x^{2n}+1\right)\left(x^{2n}-x^n+1\right)\left(x^{2n}+x^n+1\right)\)
\(\Rightarrow x^{8n}+x^{4n}+1⋮x^{2n}+x^n+1\)