K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2017

Ta có 222 = 1(mod 13) nên 222^333 ≡ 1 (mod 13)
Và 333^2 = -1 (mod 13) nên 333^222 ≡ -1 (mod 13)
Cộng lại ta có:
222^333 + 333^222 ≡ 0 (mod 13) đpcm

7 tháng 3 2017

Ta có : 222 chia 13 dư 1

=> 222 = 1 (mod13)

=> 222333 = 1333 (mod13)

=> 22233  = 1 (mod13)

=> 222333 chia 13 dư 1                                (1)

 Lại có : 333 chia 13 dư 8

=>333  = 8 (mod13)

=>333222  = 8222 (mod13)

Mà 8222=82*8111

=>82 = -1 (mod13)

=>82*8111  =  (-1)111(mod13)

=>8222 = -1 (mod13)                                (2)

Từ (1) và (2)

=> 222333+333222 = -1+1 (mod13)

=>222333+333222 = 0 (mod13)

Vậy 222333+333222 chia hết cho 13

bn về học đồng dư đi nhé

8 tháng 3 2017

mod là j

23 tháng 3 2016

Áp dụng công thức :\(a^n+b^n\) chia hết cho a+b

\(VT=\left(222^3\right)^{111}+\left(333^2\right)^{111}\) chia hết cho \(222^3+333^2\)

\(222^3\) chia 13 dư 1 (bấm máy tính )

\(333^2\) chia 13 dư 12 

\(\Rightarrow222^3+333^2\) chia hết cho 13 

\(\Rightarrow\) đpcm

20 tháng 3 2018

\(Ta\) \(có\) : \(222\equiv1\left(mod13\right)\) nên \(222^{333}\equiv1\left(mod13\right)\)

\(và\) \(333^2\equiv-1\left(mod13\right)\) nên \(333^{222}\equiv-1\left(mod13\right)\)

\(cộng\) \(lại\) \(ta\) \(có\) : \(222^{333}+333^{222}\equiv0\left(mod13\right)\) \(đpcm\)

22 tháng 9 2016

giúp mình nha hihi

22 tháng 9 2016

-Vì (1/222)^333=(1/222)^3.111=(3/666)^111

     (1/333)^222=(1/333)^2.111=(2/666)^111

-Vì 111=111 và 3/666>2/666

=))(1/222)^333>(1/333)^222

24 tháng 11 2015

C=đền bài

Ta có:2222 +4 hia hết cho 7 suy ra 2222=-4 (mod7)

suy ra :2222\(^{55555}\)=(-4)\(^{5555}\)(mod7) 55555-4 chia hết cho 7 suy ra 5555=4(mod7)

suy ra 55555\(^{2222}\)=4\(^{2222}\)(mod7)

suy ra 2222\(^{55555}\)5555\(^{2222}\)=(-4)\(^{5555}\)+4\(^{2222}\)(mod7)

mà 4\(^{2222}\)=(-4)\(^{2222}\) suy ra (-4)\(^{5555}\)+4\(^{2222}\)= tự lm típ nha bn mẹt quá

25 tháng 2 2017

Ta có:

\(222^{333}+333^{222}=111^{333}.2^{333}+111^{222}.3^{222}\)

\(=111^{222}\left[\left(111.2^3\right)^{111}+\left(3^2\right)^{111}\right]\)

\(=111^{222}\left(888^{111}+9^{111}\right)\)

\(\Rightarrow888^{111}+9^{111}\)

\(=\left(888+9\right)\left(888^{110}-888^{109}.9+...-888.9^{109}+9^{110}\right)\)

\(=13.69.\left(888^{110}-888^{109}.9+...-9^{109}+9^{110}\right)\)

\(=13.69.Q\)

\(\Rightarrow222^{333}+333^{222}⋮13\) (Đpcm)