Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có phương trình hoành độ giao điểm là
\(\dfrac{-1}{2}x^2=x-4\)
⇒\(\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
Ta có : a(2;y1); b(-4;y2). Do hai điểm a và b cùng thuộc đường thẳng d nên ta có:
\(\left\{{}\begin{matrix}y_1=x_1-4=2-4=-2\\y_2=x_2-4=-4-4=-8\end{matrix}\right.\)
Khi đó ta có:
y1+y2 -5(x1+x2)=-2-8-5(2-4)=0 ⇒đpcm
VẬY..............
Lời giải:
Để ý rằng \((x+y)(y+z)(z+x)=(x+y+z)(xy+yz+xz)-xyz\)
Áp dụng BĐT AM-GM thì \((x+y+z)(xy+yz+xz)\geq 9xyz\)
\(\Rightarrow (x+y)(y+z)(x+z)\geq \frac{8}{9}(xy+yz+xz)(x+y+z)\)
Mặt khác, dùng AM-GM dễ thấy rằng \(xy+yz+xz\geq\sqrt[3]{(xyz)^2}=3\)
Do đó \(\Rightarrow (x+y)(y+z)(x+z)\geq \frac{8}{3}(xy+yz+xz)(x+y+z)\)
Dấu $=$ xảy ra khi $x=y=z=1$
Tâm \(I\left(m;-1\right)\) bán kính \(R=\sqrt{m^2-m-6}\) với \(\left[{}\begin{matrix}m>3\\m< -2\end{matrix}\right.\)
\(\Delta IAB\) đều \(\Leftrightarrow d\left(I;d\right)=\frac{R\sqrt{3}}{2}\)
\(\Leftrightarrow\frac{\left|m-1+1\right|}{\sqrt{1^2+1^2}}=\frac{\sqrt{3m^2-3m-18}}{2}\)
\(\Leftrightarrow\sqrt{2}\left|m\right|=\sqrt{3m^2-3m-18}\)
\(\Leftrightarrow2m^2=3m^2-3m-18\)
\(\Rightarrow m^2-3m-18=0\Rightarrow\left[{}\begin{matrix}m=6\\m=-3\end{matrix}\right.\)
Phương trình đã cho là đường tròn khi:
\(m^2+4\left(m-2\right)^2-6>0\)
\(\Leftrightarrow5m^2-16m+10>0\)
\(\Rightarrow\left[{}\begin{matrix}m>\dfrac{8+\sqrt{14}}{5}\\m< \dfrac{8-\sqrt{14}}{5}\end{matrix}\right.\)
Tọa độ giao điểm của đường tròn và đường thẳng là nghiệm hệ
=>
=>
Độ dài dây cung AB= 10.
Chọn A.
x2 + y2 = 0
mà x2 lớn hơn hoặc bằng 0
y2 lớn hơn hoặc bằng 0
=> x2 + y2 = 0
<=> x2 = y2 = 0
<=> x = y = 0
dug ko do