Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n có 2 trường hợp
Với n = 2k +1 ( k thuộc Z)
=> (2k+1+6) . (2k+1+7)
= (2k + 7) .( 2k + 8)
= (2k + 7) . 2.(k+4) (chia hết cho 2) ( 1 )
Với n = 2k
=> (2k + 6) . ( 2k + 7)
= 2. (k+3) . ( 2k + 7) ( chia hết cho 2) (2 )
Từ 1 và 2
=> moi n thuoc Z thi
(n+6)x(n+7) chia het cho 2
a) + Nếu n lẻ thì n + 7 chẵn => n + 7 chia hết cho 2 => (n + 6).(n + 7) chia hết cho 2
+ Nếu n chẵn thì n + 6 chẵn => n + 6 chia hết cho 2=> (n + 6).(n + 7) chia hết cho 2
=> (n + 6).(n + 7) luôn chia hết cho 2
Nói ngặn gọn hơn là: Do (n + 6).(n + 7) là tích 2 số tự nhiên liên tiếp nên chia hết cho 2
b) n2 + n + 3
= n.(n + 1) + 3
Vì n.(n + 1) là tích 2 số tự nhiên nên chia hết cho 2; 3 không chia hết cho 2
=> n2 + n + 3 không chia hết cho 2
a) cách 1
2^4n = (24)n = ......6( có chữ số tận cùng là 6
=> (2^4n+1)+3= ......0( có chữ số tận cùng là 0)
=>(2^4n+1)+3 chia hết cho 5 với mọi n thuộc N?
cách 2
(2^4n+1)+3
=2*(24)n+3
=2*16n+3
=2(15 + 1)n+3
=2(5K+1) +3(với K là một số tự nhiên thuộc N)
=10K+5 chia hết cho 5
b ) áp dụng vào giống bài a thay đổi số thôi là đc
k mk nha!!!^~^
Ta có : (24.n+1)+3 = (.....6) + 1) + 3 = (.....0)
=> (24.n+1)+3 có chữ số tận cùng là 0
=> (24.n+1)+3 chia hết cho 5
+ Nếu n lẻ => n+3 chẵn và n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2
+ Nếu n chẵn => n+3 lẻ và n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2
=> (n+3)(n+6) chia hết cho2 với mọi n
nếu n là số lẻ thì n+3 chia hết cho 2=>tích đó chia hết cho 2
nếu n là số chẵn thì n+6 chia hết cho 2=> tích đó chia hết cho 2
Xét 2 trường hợp:
* Nếu n là số lẻ thì:
n + 3 là số chẵn
n + 6 là số lẻ
suy ra (n+3)(n+6) là số chẵn và chia hết cho 2
* Nếu n là số chẵn thì:
n + 3 là số lẻ
n + 6 là số chẵn
suy ra (n+3)(n+6) là số chẵn và chia hết cho 2
Vậy với mọi ...........
Nhớ k cho mình nhé! Thank you!!!
1. Ta có dãy chia hết cho 2 : 2,4,6,...,100
Có số ' số chia hết cho 2 là :
(100-2):2+1=50 số
Ta có dãy chia hết cho 5 : 5,10,15,...,100
Có số ' số chia hết cho 5 là :
(100-5):5+1=20 số
2.
- n là số lẻ nên suy ra n+7 là chẵn
=> (n+4)(n+7) là số chẵn
- n là số chẵn suy ra n+4 là chẵn
=> (n+4)(n+7) là số chẵn
Vậy (n+4)(n+7) là số chẵn mà số chia hết cho 2 chỉ có số chẵn .
=> đpcm
Nếu n là chẵn thì n^2 chẵn và n+3 lẻ => n^2-(n+3) là lẻ => n^-n+3 không chia hết cho 2( n khác 0 vì n thuộc n sao )
Nếu n là lẻ thì n^2 là lẻ và n+3 chẵn => n^2-(n+3) là lẻ => n^2-(n+3) không chia hết cho 2
n là số tự nhiên nên n =2k hoặc 2k+1
nếu n=2k
=>(n+3)(n+6)=(2k+3)(2k+6) chia hết cho 2 veif 2k+6 chẵn
nếu n=2k+1
=>(n+3)(n+6)=(2k+1+3)(2k+1+6)=(2k+4)(2k+7) chia hết cjo 2 vì 2k+4 chẵn
=>dpcm