Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm như vầy là sai hướng rồi.
Tham khảo :
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y+z\right)-x\right]\left[\left(x+y+z\right)^2+x^2+x\left(x+y+z\right)\right]-\left(y+z\right)\left(y^2+z^2-yz\right)\)
\(=\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+xz\right)+x^2+x^2+xy+yz+xz\right]-\left(y+z\right)\left(y^2+z^2-yz\right)\)
\(=\Rightarrow\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+xz\right)+x^2+x^2+xy+yz+xz-y^2-z^2+yz\right]\)
\(=\left(y+z\right)\left[3x^2+3xy+3yz+3xz\right]\)
\(=3\left(y+z\right)\left[\left(x^2+xy\right)+\left(yz+xz\right)\right]\)
\(=3\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]\)
\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Lời giải:
Đặt \(\left\{\begin{matrix} -x+y+z=a\\ x-y+z=b\\ x+y-z=c\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} z=\frac{a+b}{2}\\ x=\frac{b+c}{2}\\ y=\frac{c+a}{2}\\ \end{matrix}\right.\)
Khi đó:
\((x+y+z)^3=(\frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2})^3=(a+b+c)^3\) (1)
Và:
\((-x+y+z)^3+(x-y+z)^3+(x+y-z)^3+24xyz\)
\(=a^3+b^3+c^3+3(a+b)(b+c)(c+a)\)
\(=(a+b+c)^3\) theo hằng đẳng thức đáng nhớ (2)
Từ (1);(2) suy ra đpcm.
Cho e hỏi là sao từ cái dưới chữ và mà ra được cái dấu = số 2 v