Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 a) x2 + 4x + 5
= x2 + 2.x.2 + 22 + 1
=(x + 2)2 +1
vì (x + 2)2 lớn hơn hoặc bằng 0 với mọi x
suy ra A luôn lớn hơn hoặc bằng 1
dấu '=' xảy ra khi x+2=0 suy ra x=-2
vậy GTNN của A là 1 khi x= -2
b)x2 + y2 - 4x +6y +13=0
(x2 - 4x +4)+(y2 + 6y +9)=0
(x-2)2 + (y+3)2 =0
vì (x - 2)2 lớn hơn hoặc bằng 0 với mọi x
(y+3)2 lớn hơn hoặc bằng 0 với mọi y
nên để (x-2)2 + (y+3)2 =0
thì x-2=0 và y+3=0
x=2; y= -3
\(S=\left(n^2+n-1\right)^2-1\)
\(S=\left(n^2+n-1\right)^2-1^2\)
\(S=\left(n^2+n-1-1\right)\left(n^2+n-1+1\right)\)
\(S=\left(n^2+n-2\right)\left(n^2+n\right)\)
\(S=n\left(n+1\right)\left(n^2+2n-n-2\right)\)
\(S=n\left(n+1\right)\left[n\left(n+2\right)-\left(n+2\right)\right]\)
\(S=n\left(n+1\right)\left(n-2\right)\left(n-1\right)\)
Dễ thấy S là tích của 4 số nguyên liên tiếp, do đó S chia hết cho 24 ( đpcm )
\(S=\left(n^2+n-1\right)^2-1\)
\(=\left(n^2+n-1\right)^2-1^2\)
\(=\left(n^2+n-1-1\right)\left(n^2+n-1+1\right)\)
\(=\left(n^2+n-2\right)\left(n^2+n\right)\)
\(=\left(n^2-n+2n-2\right)\left(n^2+n\right)\)
\(=\left[n\left(n-1\right)+2\left(n-1\right)\right]\left(n+1\right).n\)
\(=\left(n-1\right)\left(n+2\right)\left(n+1\right)n\)
\(=\left(n-1\right).n.\left(n+1\right)\left(n+2\right)\)
Tích của 4 số liên tiếp luôn chia hết cho 24
\(\Rightarrow S⋮24\)
Ta có: a3b−ab3=a3b−ab−ab3+ab=ab(a2−1)−ab(b2−1)
=b(a−1)a(a+1)−a(b−1)b(b+1)
Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6
=> b(a−1)a(a+1);a(b−1)b(b+1)⋮6⇒a3b−ab3⋮6⇒a3b−ab3⋮6
mk chưa đk hok đến dạng này , còn phần b chắc cx như phần a thôy , pjo mk có vc bận nên tối về mk sẽ lm típ nha
2.
\(4n^3+n+3=4n^3+2n^2+2n-2n^2-n-1+4=2n\left(2n^2+n+1\right)-\left(2n^2+n+1\right)+4\)-Để \(\left(4n^3+n+3\right)⋮\left(2n^2+n+1\right)\) thì \(4⋮\left(2n^2+n+1\right)\)
\(\Leftrightarrow2n^2+n+1\in\left\{1;-1;2;-2;4;-4\right\}\) (do n là số nguyên)
*\(2n^2+n+1=1\Leftrightarrow n\left(2n+1\right)=0\Leftrightarrow n=0\) (loại) hay \(n=\dfrac{-1}{2}\) (loại)
*\(2n^2+n+1=-1\Leftrightarrow2n^2+n+2=0\) (phương trình vô nghiệm)
\(2n^2+n+1=2\Leftrightarrow2n^2+n-1=0\Leftrightarrow n^2+n+n^2-1=0\Leftrightarrow n\left(n+1\right)+\left(n+1\right)\left(n-1\right)=0\Leftrightarrow\left(n+1\right)\left(2n-1\right)=0\)
\(\Leftrightarrow n=-1\) (loại) hay \(n=\dfrac{1}{2}\) (loại)
\(2n^2+n+1=-2\Leftrightarrow2n^2+n+3=0\) (phương trình vô nghiệm)
\(2n^2+n+1=4\Leftrightarrow2n^2+n-3=0\Leftrightarrow2n^2-2n+3n-3=0\Leftrightarrow2n\left(n-1\right)+3\left(n-1\right)=0\Leftrightarrow\left(n-1\right)\left(2n+3\right)=0\)\(\Leftrightarrow n=1\left(nhận\right)\) hay \(n=\dfrac{-3}{2}\left(loại\right)\)
-Vậy \(n=1\)
1. \(x^2+y^2=z^2\)
\(\Rightarrow x^2+y^2-z^2=0\)
\(\Rightarrow\left(x-z\right)\left(x+z\right)+y^2=0\)
-TH1: y lẻ \(\Rightarrow x-z;x+z\) đều lẻ.
\(x+3z-y=x+z-y+2x\) chia hết cho 2. \(\Rightarrow\)Hợp số.
-TH2: y chẵn \(\Rightarrow\)1 trong hai biểu thức \(x-z;x+z\) chia hết cho 2.
*Xét \(\left(x-z\right)⋮2\):
\(x+3z-y=x-z+4z-y\) chia hết cho 2. \(\Rightarrow\)Hợp số.
*Xét \(\left(x+z\right)⋮2\):
\(x+3z-y=x+z+2z-y\) chia hết cho 2 \(\Rightarrow\)Hợp số.