\(cos^4x-sin^4x-2cos^2x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 9 2020

\(=\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)-2cos^2x\)

\(=cos^2x-sin^2x-2cos^2x\)

\(=-\left(sin^2x+cos^2x\right)=-1\)

4 tháng 9 2018

câu 1 : ta có : \(A=\left(sin^4x+cos^4x+sin^2x.cos^2x\right)^2-\left(sin^8x+cos^8x\right)\)

\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-3sin^2x.cos^2x\right)\)

\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-sin^2x.cos^2x\right)+2sin^2xcos^2x\)

\(=-sin^2x.cos^2x\left(1-sin^2x.cos^2x\right)+2sin^2x.cos^2x\)

\(=sin^2x.cos^2x\left(1+sin^2x.cos^2x\right)\)

tới đây mk xin sử dụng kiến thức lớp 10 một chút

\(=\dfrac{sin^22x}{4}\left(1+\dfrac{sin^22x}{4}\right)=\dfrac{sin^22x}{4}+\dfrac{sin^42x}{16}\)

vẩn phụ thuộc vào x \(\Rightarrow\) đề sai .

4 tháng 9 2018

câu 1 : câu này bn có thể tìm trong trang của mk , mk nhớ đã làm nó rồi nhưng tìm hoài không đc . nếu đc bn có thể chờ mk đi hok về mk sẽ kiếm cho bn hoắc có thể là lm lại cho bn nha :)

câu 2 : https://hoc24.vn/hoi-dap/question/657072.html

câu 3 : https://hoc24.vn/hoi-dap/question/657069.html

câu 4 : https://hoc24.vn/hoi-dap/question/656635.html

câu 5 : https://hoc24.vn/hoi-dap/question/657071.html

4 tháng 9 2018

ta có : \(\left(sin^4x+cos^4x-1\right)\left(tan^2x+cot^2x+2\right)\)

\(=\left(\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\left(sin^2x.cos^2x\right)-1\right)\left(\left(tanx+cotx\right)^2-2tanx.cotx+2\right)\)

\(=-2sin^2x.cos^2x\left(\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}\right)^2=-2sin^2x.cos^2x\left(\dfrac{sin^2x+cos^2x}{sinx.cosx}\right)^2\)

\(=-2sin^2x.cos^2x.\dfrac{1}{sin^2x.cos^2x}=-2\) (không phụ thuộc vào \(x\))(đpcm)

11 tháng 7 2019

M=sin4x(1+2cos2x)+cos4x(1+2sin2x)

= Sin4x+2Sin4x.cos2x+cos4x+2sin2x.cos4x

= sin4x+cos4x +2sin2x.cos2x(sin2x+cos2x)

= sin4x+cos4x+2sin2x.cos2x =(sin2x+cos2x)2=12=1

26 tháng 9 2020

\(cos^4x-sin^4x=2cos^2x-1\) ( 1 ) 

\(\left(cos^2x\right)^2-\left(sin^2x\right)^2=2cos^2x-1\) 

\(\left(cos^2x-sin^2x\right)\left(cosx^2+sin^2x\right)=2cos^2x-1\)  

\(\left(cos^2x-sin^2x\right)\cdot1=2cos^2x-1\)

 \(cos^2x-sin^2x=2cos^2x-1\) 

\(cosx^2-\left(1-cos^2x\right)=2cos^2x-1\)  

\(cos^2x-1+cos^2x=2cos^2x-1\)  

\(2cos^2x-1=2cos^2x-1\) 

\(0=0\left(llđ\right)\) ( tới hàng trên luôn luôn đúng cũng được chứ không cần tới hàng này nha ) 

Vậy ( 1 ) đúng ( đpcm ) 

8 tháng 7 2016

Có: \(\sin^2+\cos^2=1\)

=> \(\sin^2=1-\cos^2\)

Ta có:

\(\cos^4a+\sin^2a\cos^2a+\sin^2a=\cos^4a+\left(1-\cos^2\right)a\cos^2a+\sin^2\)

\(=\cos^4a-\cos^4a+\cos^2a+\sin^2a=\cos^2a+\sin^2a=1\)

3 tháng 9 2018

ta có : \(\dfrac{tan^2x-cos^2x}{sin^2x}+\dfrac{cot^2x-sin^2x}{cos^2x}=\dfrac{1}{cos^2x}-cot^2x+\dfrac{1}{sin^2x}-tan^2x\)

\(=\dfrac{1}{cos^2x}-tan^2x+\dfrac{1}{sin^2x}-cot^2x=\dfrac{1}{cos^2x}-\dfrac{sin^2x}{cos^2x}+\dfrac{1}{sin^2x}-\dfrac{cos^2x}{sin^2x}\)

\(=\dfrac{1-sin^2x}{cos^2x}+\dfrac{1-cos^2x}{sin^2x}=\dfrac{cos^2x}{cos^2x}+\dfrac{sin^2x}{sin^2x}=1+1=2\) không phụ thuộc vào \(x\) (đpcm)