Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình chỉ làm được câu a thôi:
a/b=b/c=>b^2=ac thay vào:
a^2+b^2/b^2+c^2=a^2+ac/ac+c^2=a*(a+c)/c*(a+c)=a/c
2. ....( đầu bài)
ta có:
\(\frac{a+b}{a-b}=\frac{c+d}{c-d}=>\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
AD t/ c dãy tỉ số bằng nhau ta có:
.\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b+a-b}{c+d+c-d}=\frac{2a+\left(b-b\right)}{2c+\left(d-d\right)}=\frac{2a}{2c}=\frac{a}{c}\)(1)
. \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b+a-b}{c+d+c-d}=\frac{2b}{2d}=\frac{b}{d}\)(2)
Từ (1) và (2) => \(\frac{a}{c}=\frac{b}{d}\)(đpcm)
a, Ta có: \(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\left(1\right)\)
b, Ta có: \(\frac{a}{a+b}< \frac{a+b}{a+b+c};\frac{b}{b+c}< \frac{b+c}{a+b+c};\frac{c}{c+a}< \frac{c+a}{a+b+c}\)
\(\Rightarrow M< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)
Từ (1) và (2) => 1<M<2 hay M không phải là số nguyên
Bạn tham khảo nhé
\(b)\) Ta có :
\(\frac{a}{a+b}>\frac{a}{a+b+c}\)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow\)\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\)\(M>1\)\(\left(1\right)\)
Lại có :
\(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)
\(\frac{b}{b+c}< \frac{a+b}{a+b+c}\)
\(\frac{c}{c+a}< \frac{b+c}{a+b+c}\)
\(\Rightarrow\)\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow\)\(M< 2\)\(\left(2\right)\)
Từ (1) và (2) suy ra : \(1< M< 2\)
Vậy M không phải là số nguyên
a) Đề sai nhé !
b) Ta có : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(\Rightarrow\frac{abz-cya}{a^2}=\frac{bcx-abz}{b^2}=\frac{cay-bcx}{c^2}=\frac{abz-cya+bcx-abz+cay-bcx}{a^2+b^2+c^2}=0\)
\(\Rightarrow abz-cya=0\Leftrightarrow abz=cya\Leftrightarrow bz=cy\Leftrightarrow\frac{y}{b}=\frac{z}{c}\)(1)
\(\Rightarrow bcx-abz=0\Leftrightarrow bcx=abz\Leftrightarrow cx=az\Leftrightarrow\frac{x}{a}=\frac{z}{c}\)(2)
Từ (1) và (2) ta có \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
b) \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(=\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c\left(ay-bx\right)}{c^2}\)
\(=\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)
\(=\frac{\left(abz-acy\right)+\left(bcx-abz\right)+\left(acy-bcx\right)}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0\)
=> bz - cy = 0 => bz = cy => \(\frac{z}{c}=\frac{b}{y}\) (1)
và cx - az = 0 => cx = az => \(\frac{x}{a}=\frac{z}{c}\) (2)
Từ (1) và (2) => đpcm
a) Sửa lại số thứ 3 là \(\frac{c}{4x-4y+z}\) mới đúng !!!
Theo đề bài suy ra :
\(\frac{2x}{2a+4b+2c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{2x+y-z}{9b}\) (tính chất dãy tỉ số bằng nhau)
Tương tự cũng gấp đôi tử và mẫu của 2 phân số còn lại, rồi áp dụng tính chất dãy tỉ số bằng nhau với từng dãy tỉ số ta được :
\(\frac{x}{a+2b}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)\(\frac{x+2y+z}{9a}\) = \(\frac{4x-4y+z}{9c}\)
Do đó ta có :
\(\frac{2x+y-z}{9b}=\frac{x+2y+z}{9a}=\frac{4x-4y+z}{9c}\) \(\Rightarrow\frac{9b}{2x+y-z}=\frac{9a}{x+2y+z}=\frac{9c}{4x-4y+z}\)
\(\Rightarrow\frac{b}{2x+y+z}=\frac{a}{x+2y+z}=\frac{c}{4x-4y+z}\) (đpcm)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}=\frac{a+b+c}{2.\left(a+b+c\right)}\left(1\right)\)
Xét 2 trường hợp:
- TH1: a + b + c = 0 \(\Rightarrow\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}\)
\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=-1+\left(-1\right)+\left(-1\right)=-3\), không phụ thuộc vào giá trị của a; b; c (đpcm)
- TH2: a + b + c \(\ne0\)
Từ (1) ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{1}{2}\) \(\Rightarrow\begin{cases}2a=b+c\\2b=a+c\\2c=a+b\end{cases}\)
\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\), không phụ thuộc vào giá trị của a; b; c (đpcm)
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Suy ra \(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=2\)
\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)
a) Ta có: a<b
\(\Leftrightarrow ac< bc\)
\(\Leftrightarrow ac+ab< bc+ab\)
\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)
hay \(\frac{a}{b}< \frac{a+c}{b+c}\)(đpcm)
b) Ta có: \(\frac{a}{a+b}>\frac{a}{a+b+c}\)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
Cộng vế theo vế, ta được:
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b+c}{a+b+c}=1\)
hay \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)(1)
Ta có: \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)
\(\frac{b}{b+c}< \frac{b+a}{a+b+c}\)
\(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng vế theo vế, ta được:
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c+b+c+a+b}{a+b+c}=2\)(2)
Từ (1) và (2) suy ra \(1< A< 2\)
hay A không phải là số nguyên(đpcm)
M.N ui, Trang này hiện nay đang bị lỗi rồi T-T, điển hình như các lỗi sau :
- Vào bạn bè thì không thấy ai đang onl cả nhưng sự thật là rất nhiều người online
- Phần thông báo mặc dù đã xem rồi nhưng thông báo vẫn hiện
- Vào trang cá nhân thì chỉ có hình bông hoa
Mong Admin mau sửa lỗi để cho A.E hài lòng, ngoài ra cũng không làm mất uy tín của Trang
Câu này dễ mà!!!
nếu như phân số có tử số bằng nhau thì mẫu càng nhỏ càng lớn vậy:
a+b bé hơn a+b+c nên lớn hơn