Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Nhận thấy ngay phương trình có 2 nghiệm \(\left[{}\begin{matrix}x=2019\\x=2018\end{matrix}\right.\)
- Với \(x>2019\Rightarrow\left\{{}\begin{matrix}x-2018>1\\x-2019>0\end{matrix}\right.\) \(\Rightarrow\left|x-2018\right|^{2019}+\left|x-2019\right|^{2018}>1\Rightarrow\) pt vô nghiệm
- Với \(x< 2018\Rightarrow\left\{{}\begin{matrix}x-2018< 0\\x-2019< -1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x-2018\right|>0\\\left|x-2019\right|>1\end{matrix}\right.\)
\(\Rightarrow\left|x-2018\right|^{2019}+\left|x-2019\right|^{2018}>1\Rightarrow\) pt vô nghiệm
- Với \(2018< x< 2019\) viết lại pt:
\(\left|x-2018\right|^{2019}+\left|2019-x\right|^{2018}=1\)
Ta có: \(\left\{{}\begin{matrix}0< x-2018< 1\\0< 2019-x< 1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x-2018\right|^{2019}< x-2018\\\left|2019-x\right|^{2018}< 2019-x\end{matrix}\right.\)
\(\Rightarrow\left|x-2018\right|^{2019}+\left|2019-x\right|^{2018}< x-2018+2019-x=1\)
\(\Rightarrow\) pt vô nghiệm
Vậy pt có đúng 2 nghiệm: \(\left[{}\begin{matrix}x=2018\\x=2019\end{matrix}\right.\)
b/
Thay \(x=0\) vào pt thấy không phải là nghiệm, chia cả tử và mẫu của các hạng tử vế trái cho x:
\(\frac{2}{x+\frac{1}{x}-1}-\frac{1}{x+\frac{1}{x}+1}=\frac{5}{3}\)
Đặt \(x+\frac{1}{x}=a\) phương trình trở thành:
\(\frac{2}{a-1}-\frac{1}{a+1}=\frac{5}{3}\)
\(\Leftrightarrow2\left(a+1\right)-\left(a-1\right)=\frac{5}{3}\left(a^2-1\right)\)
\(\Leftrightarrow5a^2-3a-14=0\) \(\Rightarrow\left[{}\begin{matrix}a=2\\a=-\frac{7}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=2\\x+\frac{1}{x}=-\frac{7}{5}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-2x+1=0\\5x^2+7x+5=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow x=1\)
gọi UCLN(n^3+2n;n^4+3n^2+1)=d
=> n^3+2n chia hết cho d
và n^4 +3n^2+1 chia hết cho d (1)
=> n^4+2n^2 chia hết cho d(2)
từ (1)(2)=> n^2+1 chia hết cho d
=> (n^2+1)^2 chia hết cho d <=> n^4 +2n^2+1 chia hết cho d (3)
từ (2)(3)=> 1 chia hết cho d
=> d=1 hoặc -1
=> đpcm
Lời giải:
Vì $xyz=1$ nên:
\(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{xyz}{x}+\frac{xyz}{y}+\frac{xyz}{z}=xy+yz+xz\)
\(\Leftrightarrow x+y+z-xy-yz-xz=0\)
\(\Leftrightarrow 1+x+y+z-xy-yz-xz-1=0\)
\(\Leftrightarrow xyz+x+y+z-xy-yz-xz-1=0\)
\(\Leftrightarrow xy(z-1)+(x+y-yz-xz)+(z-1)=0\)
\(\Leftrightarrow xy(z-1)-x(z-1)-y(z-1)+(z-1)=0\)
\(\Leftrightarrow (z-1)(xy-x-y+1)=0\)
\(\Leftrightarrow (z-1)(x-1)(y-1)=0\)
Do đó:
\(P=(x^{1999}-1)(y^{2018}-1)(z^{2019}-1)\)
\(=(x-1)(x^{1998}+x^{1997}+...+1)(y-1)(y^{2017}+...+1)(z-1)(z^{2018}+....+1)\)
\(=(x-1)(y-1)(z-1).A=0.A=0\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)=> \(\frac{xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)
=> (x+y+z)(xy+yz+zx) = xyz
=> \(x^2y+xy^2+y^2z+yz^2+zx^2+z^2x+2xyz=0\)
=> (x+y)(y+z)(z+x) = 0
=> \(\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)
TH1: x = -y
=> \(\frac{1}{x^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}=\frac{1}{\left(-y\right)^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}=\frac{1}{z^{2019}}\)
=> \(\frac{1}{x^{2019}+y^{2019}+z^{2019}}=\frac{1}{\left(-y\right)^{2019}+y^{2019}+z^{2019}}=\frac{1}{z^{2019}}\)
=> ĐPCM
Tương tự với TH2 và TH3
Gọi ƯCLN(2018+1 ;2019+1)=d( d khác 0 )
suy ra 2018+1 chia hết cho d và 2019+1 chia hết cho d
suy ra (2018+1)-(2019+1 chia hêh cho d
suy ra (2018+1-2019-1) chia hết cho d
Suy ra (-1) chia hh cho d
Suy ra ƯCLN (2018+1;2019+1)=-1
Suy ra :2818+1/2019+1 là phân số tối giản
Vậy ................................................................
Bạn bên dưới ơi, "!" là giai thừa nha