\(\frac{1}{5^2}\)+ \(\frac{1}{6^2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a Tìm x , biết : 1\(\frac{3}{5}\) + [ \(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{37}}{\frac{5}{7}+\frac{5}{17}+\frac{5}{37}}\)]  x = \(\frac{16}{5}\) b Chứng minh rằng số tự nhiên A chia hết cho 2009 , với A =   1 . 2 .3 ... 2007 . 2008 ( 1 + \(\frac{1}{2}\) + ... + \(\frac{1}{2007}\)+ \(\frac{1}{2008}\))                                                                           Giảia...
Đọc tiếp

a Tìm x , biết : 1\(\frac{3}{5}\) + [ \(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{37}}{\frac{5}{7}+\frac{5}{17}+\frac{5}{37}}\)]  x = \(\frac{16}{5}\) 

b Chứng minh rằng số tự nhiên A chia hết cho 2009 , với 

A =   1 . 2 .3 ... 2007 . 2008 ( 1 + \(\frac{1}{2}\) + ... + \(\frac{1}{2007}\)\(\frac{1}{2008}\))

                                                                           Giải

a 1\(\frac{3}{5}\)+ (\(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{37}}{\frac{5}{7}+\frac{5}{17}+\frac{5}{37}}\)) x = \(\frac{16}{5}\)\(\Leftrightarrow\) \(\frac{8}{5}\)+ [\(\frac{2\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}{5\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}\)x = \(\frac{16}{5}\)

\(\Leftrightarrow\)\(\frac{8}{5}\) + \(\frac{2}{5}\)x = \(\frac{16}{5}\)\(\Leftrightarrow\)\(\frac{2}{5}\)x = \(\frac{16}{5}\)\(-\)\(\frac{8}{5}\) \(\Leftrightarrow\) x = \(\frac{2}{5}\)\(\Leftrightarrow\)\(\frac{8}{5}\) : \(\frac{2}{5}\)\(\Leftrightarrow\)x=4

b 1 + \(\frac{1}{2}\)\(\frac{1}{3}\)+ ... + \(\frac{1}{2007}\)\(\frac{1}{2008}\) 

 = (1 + \(\frac{1}{2008}\))  + (\(\frac{1}{2}\)\(\frac{1}{2007}\)) + ... + (\(\frac{1}{2004}\)\(\frac{1}{2005}\)

= (1 + \(\frac{1}{2008}\)) + (\(\frac{1}{2}\)\(\frac{1}{2007}\)) + ... + (\(\frac{1}{1004}\)\(\frac{1}{1005}\))

\(\frac{2009}{1\times2008}\) + \(\frac{2009}{2\times2007}\) +  ... + \(\frac{2009}{1004\times1009}\) 

= 2009(\(\frac{1}{1\times2008}\) + \(\frac{1}{2\times2007}\)+ ... + \(\frac{1}{1004\times1005}\)

Do đó A = 1 . 2 .3 ... 2007 . 2008 . (1 + \(\frac{1}{2}\) + \(\frac{1}{3}\) + ... + \(\frac{1}{2007}\)\(\frac{1}{2008}\))

             = 2009(1 . 2 . 3 ... 2007 . 2008 (\(\frac{1}{1.2008}\) + \(\frac{1}{2.2007}\)+ ... + \(\frac{1}{1004.1005}\) ) \(⋮\) 2009

Vì 1 . 2 . 3 ... 1007 . 2008 (\(\frac{1}{1.2008}\) + \(\frac{1}{2.2007}\) + ... + \(\frac{1}{2004.2005}\)) là một số tự nhiên 

CÁC BẠN CÓ AI GIỐNG CÁCH LÀM CỦA MÌNH THÌ TRẢ LỜI NHÉ

1
8 tháng 5 2017

mk nghĩ là bn làm đúng đó !

\(\frac{3}{2x+1}+\frac{10}{4x+2}-\frac{6}{6x+3}=\frac{6}{13}\)

\(\Rightarrow\frac{3}{2x+1}+\frac{5}{2x+1}-\frac{2}{2x+1}=\frac{6}{13}\)

\(\Rightarrow\frac{6}{2x+1}=\frac{6}{13}\Rightarrow2x+1=13\Rightarrow x=6\)

mình giải hơi gọn có gì ko hiểu thì hỏi nha !

1 tháng 5 2018

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}< 2\left(đpcm\right)\)

7 tháng 9 2020

chữ ok con dê nhỉ yeu

7 tháng 9 2020

mà này đi học vui ko

18 tháng 4 2021

a

\(5\frac{4}{7}:x+=13\)

\(\frac{39}{7}:x=13\)

\(x=\frac{39}{7}:13\)

\(x=\frac{3}{7}\)

18 tháng 4 2021

\(\frac{4}{7}x=\frac{9}{8}-0,125\)

\(\frac{4}{7}x=1\)

\(x=1:\frac{4}{7}\)

\(x=\frac{7}{4}=1\frac{3}{4}\)