Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Đề bài sai, với \(n=1;2;3...\) thì đều sai hết
b. Đề bài sai, với \(n=0;2;4...\) thì vẫn sai hết
Lời giải:
Ta có:
\(A=n^4-4n^3-4n^2+16n=n^3(n-4)-4n(n-4)\)
\(=(n^3-4n)(n-4)=n(n^2-4)(n-4)=n(n-2)(n+2)(n-4)\)
Vì $n$ chẵn nên đặt $n=2k$ ($k\in\mathbb{N}, k>2$)
Khi đó:
\(A=2k(2k-2)(2k+2)(2k-4)=16(k-2)(k-1)k(k+1)(1)\)
Vì $k-2,k-1,k,k+1$ là 4 số tự nhiên liên tiếp nên trong đó chắc chắn tồn tại một số chia hết cho $4$ và một số chia $4$ dư $2$
\(\Rightarrow (k-2)(k-1)k(k+1)\vdots 8(2)\)
Mặt khác: $k-2, k-1, k$ là 3 số tự nhiên liên tiếp nên chắc chắn trong đó tồn tại một số chia hết cho $3$.
\(\Rightarrow (k-2)(k-1)k\vdots 3\Rightarrow (k-2)(k-1)k(k+1)\vdots 3(3)\)
Từ (2); (3) mà $(3,8)=1$ nên $(k-2)(k-1)k(k+1)\vdots 24$ $(4)$
Từ \((1);(4)\Rightarrow A=16(k-2)(k-1)k(k+1)\vdots (16.24)\)
Hay $A\vdots 384$ (đpcm)
Lời giải:
Ta có:
\(A=n^4-4n^3-4n^2+16n=n^3(n-4)-4n(n-4)\)
\(=(n^3-4n)(n-4)=n(n^2-4)(n-4)=n(n-2)(n+2)(n-4)\)
Vì $n$ chẵn nên đặt $n=2k$ ($k\in\mathbb{N}, k>2$)
Khi đó:
\(A=2k(2k-2)(2k+2)(2k-4)=16(k-2)(k-1)k(k+1)(1)\)
Vì $k-2,k-1,k,k+1$ là 4 số tự nhiên liên tiếp nên trong đó chắc chắn tồn tại một số chia hết cho $4$ và một số chia $4$ dư $2$
\(\Rightarrow (k-2)(k-1)k(k+1)\vdots 8(2)\)
Mặt khác: $k-2, k-1, k$ là 3 số tự nhiên liên tiếp nên chắc chắn trong đó tồn tại một số chia hết cho $3$.
\(\Rightarrow (k-2)(k-1)k\vdots 3\Rightarrow (k-2)(k-1)k(k+1)\vdots 3(3)\)
Từ (2); (3) mà $(3,8)=1$ nên $(k-2)(k-1)k(k+1)\vdots 24$ $(4)$
Từ \((1);(4)\Rightarrow A=16(k-2)(k-1)k(k+1)\vdots (16.24)\)
Hay $A\vdots 384$ (đpcm)
Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath
Ta phân tích biểu thức đã cho ra nhân tử :
A=n4−4n3−4n2+16nA=n4−4n3−4n2+16n
=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)
=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)
Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có : A=(2k+2)(2k)(2k+4)(2k−2)A=(2k+2)(2k)(2k+4)(2k−2)
=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)
Ta nhận thấy (k−1)(k)(k+1)(k+2)(k−1)(k)(k+1)(k+2)là tích của bốn số nguyên dương liên tiếp,tích này chia hết cho 2.3.4 = 24
Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm
Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath
Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath
n^4-4n^3-4n^2+16n
=n^3(n-4)-4n(n-4)
=n(n-2)(n+2)(n-4)
=2k(2k-2)(2k+2)(2k-4)
=16k(k-1)(k+1)(k-2)
Vì k-2;k-1;k;k+1 là 4 số liên tiếp
nên k(k-1)(k+1)(k-2) chia hết cho 4!=24
=>A chia hết cho 384
\(\Rightarrow\left(4n^3+2n^2-6n^2-3n+2n+1+3\right)⋮\left(2n+1\right)\\ \Rightarrow\left[\left(2n+1\right)\left(2n^2-3n+1\right)+3\right]⋮\left(2n+1\right)\\ \Rightarrow2n+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Rightarrow n\in\left\{-2;-1;0;1\right\}\)
\(4n^3-4n^2-n+4⋮2n+1\)
\(\Leftrightarrow4n^3+2n^2-6n^2-3n+2n+1+3⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-1;1;-2\right\}\)