Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án :
B. Đồ thị hàm số chẵn nhận trục hoành làm trục đối xứng.
1: Theo đề, ta có:
-b/2*(-1)=5/2
=>-b/-2=5/2
=>b=5
2: y=-x^2+5x-4
2 đồ thị \(y=f\left(x\right)\) và \(y=g\left(x\right)\) đối xứng nhau qua trục hoành khi \(g\left(a\right)=-f\left(a\right)\) \(\forall a\in TXĐ\)
Đặt \(y=f\left(x\right)=x-2\) ; \(y=g\left(x\right)=2-x\)
Với 1 số thực a bất kì, ta có:
\(y\left(a\right)=f\left(a\right)=a-2\)
\(y\left(a\right)=g\left(a\right)=2-a=-\left(a-2\right)=-f\left(a\right)\)
\(\Rightarrow y=x-2\) và \(y=2-x\) đối xứng qua trục hoành
Gọi công thức của hàm số bậc hai là \(y=ax^2+bx+c\)
Trục đối xứng là x=3 nên \(-\dfrac{b}{2a}=3\)
=>b=-2a
Thay x=0 và y=-16 vào (d), ta được:
\(a\cdot0^2+b\cdot0+c=-16\)
=>c=-16
=>\(y=ax^2+bx-16\)
Thay x=-2 và y=0 vào (d), ta được:
\(a\cdot\left(-2\right)^2+b\left(-2\right)-16=0\)
=>4a-2b-16=0
=>\(4a-2\cdot\left(-2a\right)=16\)
=>8a=16
=>a=2
=>b=-2a=-4
Vậy: Công thức cần tìm là \(y=2x^2-4x-16\)
a: Thay x=3 và y=0 vào (1), ta được:
\(6-3m=0\)
hay m=2
a: \(\left\{{}\begin{matrix}x_I=\dfrac{3}{2\cdot1}=\dfrac{3}{2}\\y_I=-\dfrac{\left(-3\right)^2-4\cdot1\cdot\left(-2\right)}{4\cdot1}=-\dfrac{17}{4}\end{matrix}\right.\)
1) Hai đồ thị gọi là đối xứng với nhau qua trục hoành nếu f(x)+f(x)'=0
Do:
f(x)=x-2,f(x)'=2-x và f(x)+f(x)'=0=>Chúng đối xứng với nhau qua trục hoành.