Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\dfrac{\left(\dfrac{1}{z}\right)^2}{\dfrac{1}{x}+\dfrac{1}{y}}+\dfrac{\left(\dfrac{1}{x}\right)^2}{\dfrac{1}{y}+\dfrac{1}{z}}+\dfrac{\left(\dfrac{1}{y}\right)^2}{\dfrac{1}{x}+\dfrac{1}{z}}\ge\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}{2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)}=\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
Dâu "=" xảy ra khi \(x=y=z\)
1.Ta có :\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^2-xy+y^2\) (do x+y=1)
\(=\dfrac{3}{4}\left(x-y\right)^2+\dfrac{1}{4}\left(x+y\right)^2\ge\dfrac{1}{4}\left(x+y\right)^2\)\(=\dfrac{1}{4}.1=\dfrac{1}{4}\)
Dấu "=" xảy ra khi :\(x=y=\dfrac{1}{2}\)
Vậy \(x^3+y^3\ge\dfrac{1}{4}\)
2.
a) Sửa đề: \(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a^3-a^2b\right)+\left(b^3-ab^2\right)\ge0\)
\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng vì \(a,b\ge0\))
Đẳng thức xảy ra \(\Leftrightarrow a=b\)
b) Lần trước mk giải rồi nhá
3.
a) Áp dụng BĐT Cauchy-Schwarz dạng Engel\(P=\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{\left(1+1+1\right)^2}{\left(x+y+z\right)+3}=\dfrac{9}{3+3}=\dfrac{3}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}=\dfrac{1}{y+1}=\dfrac{1}{z+1}\\x+y+z=3\end{matrix}\right.\Leftrightarrow x=y=z=1\)
b) \(Q=\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}+\dfrac{z}{z^2+1}\le\dfrac{x}{2\sqrt{x^2.1}}+\dfrac{y}{2\sqrt{y^2.1}}+\dfrac{z}{2\sqrt{z^2.1}}\)
\(=\dfrac{x}{2x}+\dfrac{y}{2y}+\dfrac{z}{2z}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)
1/ Đây là cách chứng minh dựa vào kiến thức lớp 9, không sử dụng các định lý hàm sin hoặc hàm cos của cấp 3:
Bạn tự vẽ hình.
Kẻ tam giác ABC với đường cao AH, ta đặt
\(BC=a;AC=b;AB=c;AH=h_a;BH=x\Rightarrow CH=a-x\)
Trong tam giác vuông ABH: \(AB^2=BH^2+AH^2\Rightarrow c^2=x^2+h^2_a\) (1)
Trong tam giác vuông ACH: \(AC^2=CH^2+AH^2\Rightarrow b^2=\left(a-x\right)^2+h^2_a\) (2)
Trừ vế với vế của (1) cho (2) ta được:
\(c^2-b^2=x^2-\left(a-x\right)^2=2ax-a^2\Rightarrow x=\dfrac{a^2-b^2+c^2}{2a}\)
Thay x vào (1) ta được:
\(h^2_a=c^2-x^2=c^2-\left(\dfrac{a^2-b^2+c^2}{2a}\right)^2=\left(c-\dfrac{a^2-b^2+c^2}{2a}\right)\left(c+\dfrac{a^2-b^2+c^2}{2a}\right)\)
\(\Rightarrow h_a^2=\dfrac{\left(b^2-\left(a^2-2ac+c^2\right)\right)\left(a^2+2ac+c^2-b^2\right)}{4a^2}\)
\(\Rightarrow h_a^2=\dfrac{\left(b^2-\left(a-c\right)^2\right)\left(\left(a+c\right)^2-b^2\right)}{4a^2}\)
\(\Rightarrow h_a^2=\dfrac{\left(b+c-a\right)\left(a+b-c\right)\left(a+b+c\right)\left(a-b+c\right)}{4a^2}\) (3)
Gọi \(p=\dfrac{a+b+c}{2}\) là nửa chu vi tam giác
\(\Rightarrow a+b+c=2p\) ; \(a+b-c=2\left(p-c\right)\) ; \(b+c-a=2\left(p-a\right)\) ; \(a-b+c=2\left(p-b\right)\)
Thay vào (3) ta được:
\(h_a^2=\dfrac{2\left(p-a\right)2\left(p-c\right)2p.2\left(p-b\right)}{4a^2}=\dfrac{4p\left(p-a\right)\left(p-b\right)\left(p-c\right)}{a^2}\)
\(\Rightarrow h_a=\dfrac{2\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}}{a}\)
Mà ta đã biết công thức tính diện tích tam giác:
\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}h_a.a\)
\(\Rightarrow S=\dfrac{1}{2}\dfrac{2\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}}{a}.a=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)
Bài 2:
Áp dụng đẳng thức : \(a^2+b^2\ge2ab\) (xảy ra đẳng thức khi a = b),ta có :
\(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}\ge2.\dfrac{x}{y}.\dfrac{y}{z}=\dfrac{2x}{z}\)
Tương tự : \(\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge\dfrac{2y}{z}\), \(\dfrac{z^2}{x^2}+\dfrac{x^2}{y^2}\ge\dfrac{2z}{y}\)
Cộng từng vế 3 BĐT trên ta được :
\(2\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\right)\ge2\left(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\right)\Rightarrow\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\left(\text{đpcm}\right)\)
Áp dụng BĐT AM-GM:
\(VT=\sum\dfrac{\sqrt{\left(x+y\right)^2-xy}}{4yz+1}\ge\sum\dfrac{\sqrt{\left(x+y\right)^2-\dfrac{1}{4}\left(x+y\right)^2}}{\left(y+z\right)^2+1}=\sum\dfrac{\dfrac{\sqrt{3}}{2}\left(x+y\right)}{\left(y+z\right)^2+1}\)
Set \(\left\{{}\begin{matrix}x+y=a\\y+z=b\\z+x=c\end{matrix}\right.\)thì giả thiết trở thành \(a+b+c=3\) và cần chứng minh \(\dfrac{\sqrt{3}}{2}.\sum\dfrac{a}{b^2+1}\ge\dfrac{3\sqrt{3}}{4}\)
\(\Leftrightarrow\sum\dfrac{a}{b^2+1}\ge\dfrac{3}{2}\)( đến đây quen thuộc rồi)
Ta có:\(\sum\dfrac{a}{b^2+1}=\sum a-\sum\dfrac{ab^2}{b^2+1}\ge3-\sum\dfrac{ab^2}{2b}\)(AM-GM)
\(VT\ge3-\sum\dfrac{ab}{2}\ge3-\dfrac{\dfrac{1}{3}\left(a+b+c\right)^2}{2}=\dfrac{3}{2}\)( AM-GM)
Vậy ta có đpcm.Dấu = xảy ra khi a=b=c=1 hay \(x=y=z=\dfrac{1}{2}\)
\(\sum\dfrac{x^4y}{x^2+1}=\sum\dfrac{x^3.\dfrac{1}{z}}{x^2+xyz}=\sum\dfrac{x^2}{z\left(x+yz\right)}=\sum\dfrac{x^2}{xz+1}\)
Áp dụng bất đẳng thức cauchy-schwarz:
\(Vt=\sum\dfrac{x^2}{xz+1}\ge\dfrac{\left(x+y+z\right)^2}{xy+yz+xz+3}\)
mà theo AM-GM: \(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}=3\)
hay \(3\le xy+yz+xz\)
do đó \(VT\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\ge\dfrac{3\left(xy+yz+zx\right)}{2\left(xy+yz+xz\right)}=\dfrac{3}{2}\)
Dấu = xảy ra khi x=y=z=1
P/s: Câu này khoai
\(\sum\dfrac{1}{x}\cdot\sum\dfrac{x}{y^2}\ge\sum^2\dfrac{1}{x}\)(bunhia)