\(\dfrac{12n+1}{30n+2}\left(n\in Z\right)\) tối giản

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

đặt d là ƯCLN ( 12n + 1 ; 30n + 2 )

Theo bài ra : 12n + 1 \(⋮\) d \(\Rightarrow\)5 . ( 12n + 1 ) \(⋮\) d ( 1 )

30n + 2 \(⋮\) d \(\Rightarrow\) 2 . ( 30n + 2 ) \(⋮\) d ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\) 5 . ( 12n + 1 ) - 2 . ( 30n + 2 ) \(⋮\) d

\(\Rightarrow\) 1 \(⋮\) d

\(\Rightarrow\) d = 1

Mà phân số tối giản thì có ƯCLN của tử số và mẫu số là 1

Vậy \(\dfrac{12n+1}{30n+2}\) là phân số tối giản

4 tháng 8 2017

Gọi \(d\)\(UCLN\left(12n+1;30n+2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow60n+5-60n-4⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy phân số \(\dfrac{12n+1}{30n+2}\) tối giản với mọi \(n\in N\)

3 tháng 6 2017

Gọi \(ƯCLN_{\left(12n+1\right)}\)\(ƯCLN_{\left(30n+2\right)}\)\(a\left(a\ne0\right)\)

\(\left(12n+1\right)⋮a\)

\(\Rightarrow5\left(12n+1\right)⋮a\)

\(\left(30n+2\right)⋮a\)

\(\Rightarrow2\left(30n+2\right)⋮a\)

\(\Rightarrow\left[5\left(12n+1\right)\right]-\left[2\left(30n+2\right)\right]⋮a\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮a\)

\(\Rightarrow60n+5-60n-4⋮a\)

\(\Rightarrow\left(60n-60n\right)+\left(5-4\right)⋮a\)

\(\Rightarrow1⋮a\)

\(\Rightarrow a=1\)

Vậy \(\dfrac{12n+1}{30n+2}\) là phân số tối giản

Đây là bài lớp 6 Lâm Thái Nguyên nhé.

Sau này gửi câu hỏi bạn nên phân ***** đúng nhé. Mấy bạn lớp 7 không nhớ nổi đâu.

3 tháng 6 2017

Gọi ước chung lớn nhất của 12n + 1 và 30n + 2 là a.

=> 5 (12n +1) - 2 (30n + 2) = 1 \(⋮\) a

=> a = 1

Vì ước chung lớn nhất của tử và mẫu của phân số \(\dfrac{12n+1}{30n+2}\) là 1 nên:

\(\dfrac{12n+1}{30n+2}\) là phân số tối giản (đpcm).

9 tháng 1 2019

Gọi d là ƯCLN( 12n + 1 ; 30n +2 ) nên ta có :

12n + 1 chia hết d và 30n + 2 chia hết d.

=> 5(12n + 1 ) chia hết cho d và 2(30n +2 ) chia hết cho d

=> 60n + 5 chia hết cho d và 60n + 4 chia hết cho d

=> (60n +5 ) - (60n +4 ) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> tối giản

9 tháng 1 2019

Giải:

Đặt Ư CLN(12n+1;30n+2)=d

Ta có: 12n+1 \(⋮\) d (1)

30n+2 \(⋮\) d (2)

Từ (1) \(\Rightarrow\) 5(12n+1) \(⋮\) d

\(\Leftrightarrow\) \(60n+5⋮d\) (3)

Từ (2) \(\Rightarrow2\left(30n+2\right)⋮d\)

\(\Leftrightarrow\) \(60n+4⋮d\) (4)

Từ (3) và (4) ta có:
(60n+5)-(60n+4) \(⋮\) d

\(\Leftrightarrow1⋮d\)\(\Rightarrow d\inƯ\left(1\right)=\left\{1\right\}\)

Vậy d=1 \(\Rightarrow\) Ư CLN( 12n+1;30n+2)=1

Vậy 12n+1 và 30n+2 là hai số nguyên tố cùng nhau.

\(\Rightarrow\dfrac{12n+1}{30n+2}\) là phân số tối giản.

Vậy...............................................( đpcm)

9 tháng 7 2017

Đặt d=ƯCLN(12n+1;30n+2)

=>12n+1 chia hết cho d; 30n+2 chia hết cho d

=>5(12n+1) chia hết cho d; 2(30n+2) chia hết cho d

=>60n+5 chia hết cho d; 60n+4 chia hết cho d

=>(60n+5)-(60n+4) chia hết cho d

=>1 chia hết cho d

=>d=1

=>phân số \(\frac{12n+1}{30n+2}\) là phân số tối giản 

8 tháng 7 2017

Bài 1:

\(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^2}-\frac{5^{10}.7^3-25^3.49^2}{\left(125.7\right)^3+5^9.14^3}=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^2}-\frac{5^{10}.7^3-\left(5^2\right)^3.\left(7^2\right)^2}{\left(5^3.7\right)^3+5^9.2^3.7^3}\)

\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^2}-\frac{5^{10}.7^3-5^6.7^4}{5^9.7^3+5^9.2^3.7^3}=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^2\left(3^4+1\right)}-\frac{5^6.7^3\left(5^4-7\right)}{5^9.7^3\left(1+2^3\right)}=\frac{3^2.2}{82}-\frac{618}{5^3.9}\)

\(=\frac{9}{41}-\frac{206}{375}=\)

17 tháng 8 2016

Gọi d là ƯCLN(12n+1;30n+2)

Ta có: \(12n+1⋮d\Rightarrow5\left(12n+1\right)=60n+5⋮d\)

           \(30n+2⋮d\Rightarrow2\left(30n+2\right)=60n+4⋮d\)

\(\Rightarrow\left(60n+5\right)-60n-4⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{1;-1\right\}\)

Mà \(n\in N\Rightarrow d=1\)

Vậy \(\frac{12n+1}{30n+2}\) là phân số tối giản              ĐPCM

17 tháng 8 2016

Giải:

Gọi d = UCLN ( 12n + 1; 30n + 2 )

Ta có: 

\(12n+1⋮d\)

\(\Rightarrow5\left(12n+1\right)⋮d\)

\(\Rightarrow60n+5⋮d\)

\(30n+2⋮d\)

\(\Rightarrow2\left(30n+2\right)⋮d\)

\(\Rightarrow60n+4⋮d\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow60n+5-60n-4⋮d\)

\(\Rightarrow\left(60n-60n\right)+\left(5-4\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\in\left\{\pm1\right\}\)

Vì \(d\in N\) nên d = 1

Vì d = UCLN( 12n + 1; 30n + 2 )= 1 \(\Rightarrow\frac{12n+1}{30n+2}\) là phân số tối giản.

\(\Rightarrowđpcm\)

 

11 tháng 8 2017

a. Gọi \(d=ƯCLN\left(12n+1;30n+2\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(d\in N;1⋮d\Leftrightarrow d=1\)

\(\LeftrightarrowƯCLN\left(12n+1;30n+2\right)=1\)

Vậy .........

b. Gọi \(d=ƯCLN\left(14n+17;21n+25\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}14n+17⋮d\\21n+25⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}42n+51⋮d\\42n+50⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(d\in N;1⋮d\Leftrightarrow d=1\)

\(\LeftrightarrowƯCLN\left(14n+17;21n+25\right)=1\)

Vậy ...

11 tháng 8 2017

Gọi \(d\)\(UCLN\left(12n+1;30n+2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy p/s \(A\) tối giản với mọi \(n\in N\)

b) Gọi \(d\)\(UCLN\left(14n+17;21n+25\right)\)

\(\Rightarrow\left\{{}\begin{matrix}14n+17⋮d\\21n+25⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}42n+51⋮d\\42n+50⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy p/s \(B\) tối giản với mọi \(n\in N\)

21 tháng 8 2015

Để D nguyên thì

8n-5 chia hết cho 3n+2

=> 24n-15 chia hết cho 3n+2

=> 24n+16-31 chia hết cho 3n+2

Vì 24n+16 chia hết cho 3n+2

=> -31 chia hết cho 3n+2

=> 3n+2 thuộc Ư(31)

3n+2n
1-1/3
-1-1
3129/3
-31-11

Mà n nguyên

=> n \(\in\){-1; -11}


Gọi ƯCLN(8n-5; 3n+2) là d. Ta có:

8n-5 chia hết cho d => 24n-15 chia hết cho d

3n+2 chia hết cho d => 24n+16 chia hết cho d

=> 24n+16-(24n-15) chia hết cho d

=> 31 chia hết cho d

Giả dử phân số rút gọn được

=> 3n+2 chia hết cho 31

=> 3n+2+31 chia hết cho 31

=> 3n+33 chia hết cho 31

=> 3(n+11) chia hết cho 31

=> n+11 chia hết cho 31

=> n = 31k-11

KL: Để D tối giản thì n \(\ne\)31k-11

a) \(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)

\(\Rightarrow2^n\cdot\left(2^{-1}+4\right)=9\cdot2^5\)

\(\Rightarrow2^n\cdot4,5=288\)

\(\Rightarrow2^n=64\)

\(\Rightarrow n=6\)

b) \(2^m-2^n=1984\)

\(\Rightarrow2^n\cdot\left(2^{m-n}-1\right)=2^6\cdot31\)

\(\Rightarrow\left\{{}\begin{matrix}2^n=2^6\\2^{m-n}-1=31\end{matrix}\right.\)

\(\Rightarrow n=6\)

\(\Rightarrow2^{m-n}=32\Rightarrow m-n=5\Rightarrow m=11\)

14 tháng 12 2017

1. A = \(\dfrac{3n-7}{n-1}=\dfrac{3n-3}{n-1}+\dfrac{-7}{n-1}=3+\dfrac{-7}{n-1}\)

Tại giá trị \(A\notin Z,3\in Z\)\(\Rightarrow\dfrac{-7}{n-1}\in Z\)\(\Rightarrow n-1\inƯ\left(-7\right)\) với \(x\ne1\) (mẫu sẽ có giá trị là 0 nếu x = 1)

Tại \(n-1=7\)\(\Leftrightarrow n=7+1=8\)

Tại \(n-1=-7\Leftrightarrow n=-7+1=-6\)

Tại \(n-1=1\Leftrightarrow n=1+1=2\)

Tại \(n-1=-1\Leftrightarrow n=-1+1=0\)

14 tháng 12 2017

2. B = \(\dfrac{4n+1}{2n-3}=\dfrac{4n+6}{2n-3}+\dfrac{-5}{2n-3}=2+\dfrac{-5}{2n-3}\)

Tại giá trị \(B\in Z,2\in Z\)\(\Rightarrow\dfrac{-5}{2n-3}\in Z\)\(\Rightarrow2n-3\inƯ\left(-5\right)\) với \(x\ne\dfrac{3}{2}\)

Tại \(2n-3=5\Leftrightarrow2n=8\Leftrightarrow n=4\)

Tại \(2n-3=-5\Leftrightarrow2n=-2\Leftrightarrow n=-1\)

Tại \(2n-3=1\Leftrightarrow2n=4\Leftrightarrow n=2\)

Tại \(2n-3=-1\Leftrightarrow2n=2\Leftrightarrow n=1\)

29 tháng 7 2017

\(\dfrac{x-2}{2}=\dfrac{y-4}{3}=\dfrac{z-8}{5}\)

\(\Rightarrow\dfrac{x-2}{2}+2=\dfrac{y-4}{3}+2=\dfrac{z-8}{5}+2\)

\(\Rightarrow\dfrac{x+2}{2}=\dfrac{y+2}{3}=\dfrac{z+2}{5}\)

\(\Rightarrow\left(\dfrac{x+2}{2}\right)^2=\left(\dfrac{y+2}{3}\right)^2=\left(\dfrac{z+2}{5}\right)^2\)

\(\Rightarrow\dfrac{\left(x+2\right)^2}{4}=\dfrac{\left(y+2\right)^2}{9}=\dfrac{\left(z+2\right)^2}{25}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{\left(x+2\right)^2}{4}=\dfrac{\left(y+2\right)^2}{9}=\dfrac{\left(z+2\right)^2}{25}=\dfrac{3.\left(y+2\right)^2}{27}\dfrac{\left(x+2\right)^2+3\left(y+2\right)^2-\left(z+2\right)^2}{4+27-25}=\dfrac{24}{6}=4\)\(\Rightarrow\left\{{}\begin{matrix}\left(x+2\right)^2=16\\\left(y+2\right)^2=36\\\left(z+2\right)^2=100\end{matrix}\right.\)

Bạn chia trường hợp rồi tìm x,y,z nhé