\(\dfrac{-3n+1}{3n}\),\(\dfr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 6 2021

Lời giải:

Gọi $d$ là ƯCLN của $-3n+1$ và $3n$

Ta có:

$-3n+1\vdots d$

$3n\vdots d$

$\Rightarrow -3n+1+3n\vdots d$

$1\vdots d$

$\Rightarrow d=1$

Vậy $-3n+1, 3n$ nguyên tố cùng nhau nên phân số $\frac{-3n+1}{3n}$ tối giản.

------------------

Gọi $k$ là ƯCLN của $-n+4$ và $3n-11$

Ta có:

$-n+4\vdots d$

$\Rightarrow -3n+12\vdots d$

$3n-11\vdots d$

$\Rightarrow (-3n+12)+(3n-11)\vdots d$

$1\vdots d$

$\Rightarrow d=1$

$\Rightarrow \frac{-n+4}{3n-11}$ là phân số tối giản (đpcm)

Giải:

\(\dfrac{-3n+1}{3n}\) 

Gọi \(ƯCLN\left(-3n+1;3n\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}-3n+1⋮d\\3n⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(-3n+1\right)+\left(3n\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{-3n+1}{3n}\) là p/s tối giản

 

\(\dfrac{-n+4}{3n-11}\) 

Gọi \(ƯCLN\left(-n+4;3n-11\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}-n+4⋮d\\3n-11⋮d\end{matrix}\right.\)   \(\Rightarrow\left[{}\begin{matrix}3.\left(-n+4\right)⋮d\\3n-11⋮d\end{matrix}\right.\)   \(\Rightarrow\left[{}\begin{matrix}-3n+12⋮d\\3n-11⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(-3n+12\right)+\left(3n-11\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{-n+4}{3n-11}\) là p/s tối giản

Chú bạn học tốt!

14 tháng 6 2017

a, Gọi d là ước chung của 21n + 4 và 14n + 3 \(\left(d\in Z,d\ne0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\)

+) Vì : \(21n+4⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow42n+8⋮d\)

+) Vì : \(14n+3⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow42n+9⋮d\)

\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)

\(\Rightarrow42n+9-48n-8⋮d\Rightarrow1⋮d\)

\(\Rightarrow d\in\left\{1;-1\right\}\) => \(\dfrac{21n+4}{14n+3}\) là phân số tối giản

b, tương tự

c, Gọi d là ước chung của 2n + 3 và n2 + 3n + 2 \(\left(d\in Z,d\ne0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\n^2+3n+2⋮d\end{matrix}\right.\)

+) Vì \(2n+3⋮d\Rightarrow n\left(2n+3\right)⋮d\Rightarrow2n^2+3n⋮d\)

+) Vì : \(n^2+3n+2⋮d\Rightarrow2\left(n^2+3n+2\right)⋮d\Rightarrow2n^2+6n+4⋮d\)

Mà : \(2n^2+3n⋮d\)

\(\Rightarrow\left(2n^2+6n+4\right)-\left(2n^2+3n\right)⋮d\)

\(\Rightarrow2n^2+6n+4-2n^2-3n⋮d\Rightarrow3n+4⋮d\)

\(\Rightarrow2\left(3n+4\right)⋮d\Rightarrow6n+8⋮d\)

Vì : \(2n+3⋮d\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\)

\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\)

\(\Rightarrow6n+9-6n-8⋮d\Rightarrow1⋮d\)

\(\Rightarrow d\in\left\{-1;1\right\}\Rightarrow\dfrac{2n+3}{n^2+3n+2}\) là phân số tối giản

d, tương tự câu c

15 tháng 6 2017

Mình làm 1 câu thôi các câu sau bạn làm theo mẫu nhé

Gọi d là UCLN(21n+4;14n+3)

\(\Leftrightarrow21n+4⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow42n+8⋮d\)

\(\Leftrightarrow14n+3⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow42n+9⋮d\)

\(42n+8;42n+9⋮d\)

\(\Leftrightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)

\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow\dfrac{21n+4}{14n+3}\)tối giản với mọi n

16 tháng 2 2015

đề bài là 30n+1 thì mới làm được nếu là 30n+1 thì làm như sau 

gọi d thuộc ước chung  của 15n+1 và 30n+1 

suy ra 15n+1 chia hết cho d  

30n+1 chia hết cho d

vậy 2.(15n+1) chia hết cho d

30n+1 chia hết cho d 

suy ra 30n+2 chia hết cho d 

30n+1 chia hết cho d 

vậy(30n+2)-(30n+1) chi hết cho d 

1 chia hết cho d 

vậy d thuộc tập hợp 1 và -1

c/m 15n+1/30n+1 là phân số tối giản 

 

đè bài câu a sai ròi bạn ạ 

phải là 30n +1

24 tháng 1 2018

a, Gọi d = ƯCLN(n+1,2n+3) (d thuộc N*)

Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

=> d = 1

=> đpcm

b, Gọi d = ƯCLN(2n+3,4n+8) (d thuộc N*)

ta có: \(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n + 3 là số lẻ

=> d = 1

=> đpcm

c, Gọi d = ƯCLN(3n+2,5n+3) (d thuộc N*)

Ta có: \(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

=> d = 1

=> đpcm

25 tháng 1 2018

, Gọi d = ƯCLN(n+1,2n+3) (d thuộc N*)

Ta có: ⎧⎨⎩n+1⋮d2n+3⋮d⇒⎧⎨⎩2n+2⋮d2n+3⋮d{n+1⋮d2n+3⋮d⇒{2n+2⋮d2n+3⋮d

⇒2n+3−(2n+2)⋮d⇒2n+3−(2n+2)⋮d

⇒1⋮d⇒1⋮d

=> d = 1

=> đpcm

b, Gọi d = ƯCLN(2n+3,4n+8) (d thuộc N*)

ta có: ⎧⎨⎩2n+3⋮d4n+8⋮d⇒⎧⎨⎩4n+6⋮d4n+8⋮d{2n+3⋮d4n+8⋮d⇒{4n+6⋮d4n+8⋮d

⇒4n+8−(4n+6)⋮d⇒4n+8−(4n+6)⋮d

⇒2⋮d⇒2⋮d

⇒d∈{1;2}⇒d∈{1;2}

Mà 2n + 3 là số lẻ

=> d = 1

=> đpcm

c, Gọi d = ƯCLN(3n+2,5n+3) (d thuộc N*)

Ta có: ⎧⎨⎩3n+2⋮d5n+3⋮d⇒⎧⎨⎩15n+10⋮d15n+9⋮d{3n+2⋮d5n+3⋮d⇒{15n+10⋮d15n+9⋮d

⇒15n+10−(15n+9)⋮d⇒15n+10−(15n+9)⋮d

⇒1⋮d⇒1⋮d

=> d = 1

=> đpcm

Bài 1:

Theo đề, ta có:

\(\dfrac{a+6}{b+14}=\dfrac{3}{7}\)

=>7a+42=3b+42

=>7a=3b

hay a/b=3/7

31 tháng 7 2017

a) \(\dfrac{n+4}{n+3}=\dfrac{n+3+1}{n+3}=\dfrac{n+3}{n+3}+\dfrac{1}{n+3}=1+\dfrac{1}{n+3}\)

=> n+3 \(\in\) Ư(1) = {-1,1}

Ta có : n+3 = -1

n = (-1)-3

n = -4

n+3 = 1

n = 1-3

= -2

Vậy n = -4 hoặc -2

b) \(\dfrac{n-1}{n-2}=\dfrac{n-2+1}{n-2}=\dfrac{n-2}{n-2}+\dfrac{1}{n-2}=1+\dfrac{1}{n-2}\)

=> n-2 \(\in\) Ư(1) = {-1,1}

Ta có : +) n-2= -1

n=(-1)+2

n=1

+) n-2 = 1

n=1+2

n=3

Vậy n=1 hoặc 3

c) \(\dfrac{2n+3}{4n+7}\)

Gọi ƯCLN(2n+3,4n+7) = d

Ta có : 2n+3\(⋮\)d => 2(2n+3) = 4n+6 \(⋮\) d

4n+7 \(⋮\) d

=> (4n+6)-(4n+7) \(⋮\) d

=> -1 \(⋮\) d

=> d = Ư(-1) = {-1,1}

Để phân số tối giản

=> ƯC(4n+6,4n+7)=1

=> d = -1 hoặc 1

d) \(\dfrac{n^3+2n}{n^4+3n^2+1}\)

Gọi d là ƯCLN của n3+2n và n4+3n2+1

=> n3 + 2n chia hết cho d và n4 + 3n2 + 1 \(⋮\) d

=> n(n3 + 2n) = n4 + 2n2 \(⋮\) d

=> (n4 + 3n2 + 1) -(n4 + 2n2) = n2 + 1 \(⋮\) d

=> (n2 + 1)2 = n4 + 2n2 + 1 \(⋮\) d

=> (n4 + 3n2 + 1) - ( n4 + 2n2 + 1 ) = n2 \(⋮\) d

=> n2 + 1 - n2 = 1 \(⋮\) d

=> d = 1 hoặc d = - 1 Vậy phân số ban đầu là tối giản
22 tháng 2 2017

a)gọi d là ƯCLN (3n-1;6n-3)

\(\Rightarrow\hept{\begin{cases}3n-1⋮d\\6n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n-2⋮d\\6n-3⋮d\end{cases}}\)

=> (6n-3)-(6n-2)\(⋮\)d

\(\Rightarrow1⋮d\)

=>d=1

\(\Rightarrow\frac{3n-1}{6n-3}\)là pstg(ĐCCM)

b) Gọi d là ƯCLN(2n+11;3n+16)

\(\Rightarrow\hept{\begin{cases}2n+11⋮d\\3n+16⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+33⋮d\\6n+32⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+33\right)-\left(6n+32\right)⋮d\)

\(\Rightarrow1⋮d\)

=>d=1

Vậy\(\frac{2n+11}{3n+16}\) Là pstg(ĐCCM)

Tớ giải xong rồi ai nhớ nha k cho tôi đi. 

\(\frac{-n3+1}{3n}=\frac{-3n+1}{3n}\)

Gọi d = ƯCLN( -3n + 1; 3n ). Ta có :

\(\hept{\begin{cases}-3n+1⋮d\\3n⋮d\end{cases}\Leftrightarrow-3n+1+3n⋮d\Leftrightarrow1⋮d}\)

Vậy \(d\in\left\{1;-1\right\}\), suy ra \(\frac{-n3+1}{3n}\) tối giản ( đpcm )

Gọi d = ƯCLN( -n + 14; 3n - 11). Ta có :

\(\hept{\begin{cases}-n+14⋮d\\3n-11⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}3n-42⋮d\\3n-11⋮d\end{cases}\Leftrightarrow}3n-42-3n+11⋮d\Leftrightarrow-31⋮d}\)

Vậy \(d\in\left\{1;31;-1;-31\right\}\), suy ra \(\frac{-n+14}{3n-11}\) tối giản ( đpcm )

14 tháng 5 2017

a) Hướng dẫn: Đầu tiên chỉ cần phân tích ước của 74. Vậy để \(\frac{a}{74}\)tối giản thì a \(\ne\)Ư(74) hay a \(\ne\)B[(Ư)74]

b) Gọi d là ước chung lớn nhất của 3n và 3n+1

=> 3n \(⋮\)

Và: 3n+1 \(⋮\)d

=> (3n+1)-3n \(⋮\)d

=> 1 \(⋮\)d

=> d \(\in\)Ư(1)

=> d \(\in\){ 1}

Vậy \(\frac{3n}{3n+1}\)là phân số tối giản

Duyệt đi, chúc bạn học giỏi!

8 tháng 6 2017

\(\frac{3n}{3n+1}\)