K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 6 2020

\(\frac{1+sin4x+cos4x}{1-sin4x+cos4x}=\frac{1+2sin2x.cos2x+2cos^22x-1}{1-2sin2x.cos2x+2cos^22x-1}\)

\(=\frac{2cos2x\left(sin2x+cos2x\right)}{2cos2x\left(cos2x-sin2x\right)}=\frac{sin2x+cos2x}{cos2x-sin2x}\)

\(=\frac{\sqrt{2}sin\left(2x+\frac{\pi}{4}\right)}{\sqrt{2}cos\left(2x+\frac{\pi}{4}\right)}=tan\left(2x+\frac{\pi}{4}\right)\)

\(\left(sin5x-cos5x\right)^2-\left(sin3x+cos3x\right)^2\)

\(=\left(\sqrt{2}sin\left(5x-\frac{\pi}{4}\right)\right)^2-\left(\sqrt{2}sin\left(3x+\frac{\pi}{4}\right)\right)^2\)

\(=2sin^2\left(5x-\frac{\pi}{4}\right)-2sin^2\left(3x+\frac{\pi}{4}\right)\)

\(=1-cos\left(10x-\frac{\pi}{2}\right)-1+cos\left(6x+\frac{\pi}{2}\right)\)

\(=-sin10x-sin6x=-2sin8x.cos2x\)

NV
15 tháng 6 2020

\(\frac{sin3x+sinx+sin4x}{cos4x+1+cosx+cos3x}=\frac{2sin2x.cosx+2sin2x.cos2x}{2cos^22x+2cos2x.cosx}=\frac{2sin2x\left(cosx+cos2x\right)}{2cos2x\left(cos2x+cosx\right)}=\frac{sin2x}{cos2x}=tan2x\)

\(\frac{sin^22x+2cos\left(2\pi+\pi+2x\right)-2}{-3+4cos2x+cos\left(\pi-4x\right)}=\frac{sin^22x-2cos2x-2}{-3+4cos2x-cos4x}=\frac{4sin^2x.cos^2x-2\left(2cos^2x-1\right)-2}{-3+4\left(1-2sin^2x\right)-\left(1-2sin^22x\right)}\)

\(=\frac{4cos^2x\left(sin^2x-1\right)}{-8sin^2x+2sin^22x}=\frac{2cos^2x.\left(-cos^2x\right)}{-4sin^2x+4sin^2x.cos^2x}=\frac{cos^4x}{2sin^2x\left(1-cos^2x\right)}\)

\(=\frac{cos^4x}{2sin^4x}=\frac{1}{2}cot^4x\)

15 tháng 6 2020

Mình cảm ơn nhé :))

11 tháng 6 2020

Em cảm ơn

NV
9 tháng 6 2020

\(cos5x.cos3x+sin7x.sinx=\frac{1}{2}cos8x+\frac{1}{2}cos2x-\frac{1}{2}cos8x+\frac{1}{2}cos6x\)

\(=\frac{1}{2}\left(cos6x+cos2x\right)=cos4x.cos2x\)

\(\frac{1-2sin^22x}{1-sin4x}=\frac{cos^22x-sin^22x}{cos^22x+sin^22x-2sin2x.cos2x}\)

\(=\frac{\left(cos2x-sin2x\right)\left(cos2x+sin2x\right)}{\left(cos2x-sin2x\right)^2}=\frac{cos2x+sin2x}{cos2x-sin2x}=\frac{\frac{cos2x}{cos2x}+\frac{sin2x}{cos2x}}{\frac{cos2x}{cos2x}-\frac{sin2x}{cos2x}}=\frac{1+tan2x}{1-tan2x}\)

\(2cosx-3cos\left(\pi-x\right)+5sin\left(4\pi-\frac{\pi}{2}-x\right)+cot\left(\pi+\frac{\pi}{2}-x\right)\)

\(=2cosx+3cosx-5sin\left(\frac{\pi}{2}+x\right)+cot\left(\frac{\pi}{2}-x\right)\)

\(=5cosx-5cosx+tanx=tanx\)

NV
30 tháng 4 2019

\(cosx.cos\left(\frac{\pi}{3}-x\right)cos\left(\frac{\pi}{3}+x\right)=\frac{1}{2}cosx\left(cos\frac{2\pi}{3}+cos2x\right)=-\frac{1}{4}cosx+\frac{1}{2}cosx.cos2x\)

\(=-\frac{1}{4}cosx+\frac{1}{4}\left(cos3x+cosx\right)=\frac{1}{4}cos3x\)

\(sin5x-2sinx\left(cos4x+cos2x\right)=sinx.cos4x+cosx.sin4x-2sinx.cos4x-2sinx.cos2x\)

\(=sin4x.cosx-cos4x.sinx-2sinx.cos2x=sin3x-2sinx.cos2x\)

\(=sinx.cos2x+cosx.sin2x-2sinx.cos2x\)

\(=sin2x.cosx-cos2x.sinx=sinx\)

14 tháng 6 2020

\(D=\frac{sin4x+sin5x+sin6x}{cos4x+cos5x+cos6x}\)

\(=\frac{\left(sin4x+sin6x\right)+sin5x}{\left(cos4x+cos6x\right)+cos5x}\)

\(=\frac{2sin\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+sin5x}{2cos\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+cos5x}\)

\(=\frac{2sin5x.cos\left(-x\right)+sin5x}{2cos5x.cos\left(-x\right)+cos5x}=\frac{sin5x\left(2.cos\left(-x\right)+1\right)}{cos5x\left(2.cos\left(-x\right)+1\right)}=\frac{sin5x}{cos5x}=tan5x\)

9 tháng 8 2019

\(D=\frac{1+sin2x+cos2x}{1+sin2x-cos2x}=\frac{1+2sinxcosx+2cos^2x-1}{1+2sinxcosx-1+2sin^2x}\)

\(D=\frac{cosx\left(sinx+cosx\right)}{sinx\left(sinx+cosx\right)}=cotx\)

9 tháng 8 2019

\(F=\frac{sinx+sin4x+sin7x}{cosx+cos4x+cos7x}\)

\(F=\frac{2sin4xcos3x+sin4x}{2cos4xcos3x+cos4x}\)

\(F=\frac{2sin4x\left(cos3x+1\right)}{2cos4x\left(cos3x+1\right)}=tan4x\)

NV
3 tháng 6 2020

\(cos^2x-\left(2sin\frac{x}{2}cos\frac{x}{2}\right)^2=cos^2x-sin^2x=cos2x\)

\(\frac{sin3x}{sinx}-\frac{cos3x}{cosx}=\frac{sin3x.cosx-cos3x.sinx}{sinx.cosx}=\frac{sin\left(3x-x\right)}{\frac{1}{2}sin2x}=\frac{2sin2x}{sin2x}=2\)

\(\frac{cosx+cos3x+cos2x+cos4x}{sinx+sin3x+sin2x+sin4x}=\frac{2cosx.cos2x+2cosx.cos3x}{2sin2x.cosx+2sin3x.cosx}=\frac{2cosx\left(cos2x+cos3x\right)}{2cosx\left(sin2x+sin3x\right)}\)

\(=\frac{cos2x+cos3x}{sin2x+sin3x}=\frac{2cos\frac{x}{2}.cos\frac{5x}{2}}{2sin\frac{5x}{2}.cos\frac{x}{2}}=cot\frac{5x}{2}\)

NV
7 tháng 5 2019

\(A=\frac{cosx-cos3x+cos4x-cos2x}{sinx-sin3x+sin4x-sin2x}=\frac{2sin2x.sinx-2sin3x.sinx}{-2cos2x.sinx+2cos3x.sinx}\)

\(=\frac{sin2x-sin3x}{cos3x-cos2x}=\frac{-2cos\left(\frac{5x}{2}\right)sin\left(\frac{x}{2}\right)}{-2sin\left(\frac{5x}{2}\right)sin\left(\frac{x}{2}\right)}=cot\left(\frac{5x}{2}\right)\)

\(B=sinx+2cos2x.sinx+2cos4x.sinx+2cos6x.sinx\)

\(=sinx+sin3x-sinx+sin5x-sin3x+sin7x-sin5x\)

\(=sin7x\)

NV
25 tháng 4 2019

\(\frac{sin2x-sin4x}{1-cos2x+cos4x}=\frac{sin2x-2sin2x.cos2x}{1-cos2x+2cos^22x-1}=\frac{sin2x\left(1-2cos2x\right)}{-cos2x\left(1-2cos2x\right)}=\frac{-sin2x}{cos2x}=-tan2x\)

\(\frac{sin4x-sin2x}{1-cos2x+cos4x}=-\left(\frac{sin2x-sin4x}{1-cos2x+cos4x}\right)=-\left(-tan2x\right)=tan2x\) lấy luôn kết quả câu trên cho lẹ, biến đổi thì làm y hệt