Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(B=x^2-10x+28\)
\(\Rightarrow B=x^2-2.x.5+25+3\)
\(\Rightarrow B=\left(x+5\right)^2+3\)
Vì \(\left(x+5\right)\ge0\) ( với mọi x )
\(\Rightarrow\left(x+5\right)+3\ge3\)
=> đpcm
A=(x-3)(x-5)+2=x^2-5x-3x+15+2=x^2-8x+17=x^2-8x+16+1=(x-4)^2+1>0
B=x^2-5x+7=x^2-5/2*2x+(5/2)^2-(5/2)^2+7=(x-5/2)^2+3/4>0
C=x^2-xy+y^2=x^2-1/2*2xy+1/4y^2-1/4y^2+y^2=(x-1/2y)^2+3/4y^2>0
A= x2-4x+5
<=> x2-2*x*2+22+1
<=> ( x-2)2+1 vì (x-2)>= 0
=> A >= 1 (dương)
B x2 -x+1
<=> x2- 2*x *1/2 +(1/2)2+3/4
<=> ( x-1/2)2+3/4
vì ( x-1/2)2 >= 0
=> B>= 3/4 (dương)
\(Q=5x^2+2y^2+4xy+2x+4y+2009\)
\(Q=\left(4x^2+4xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2+4y+4\right)+2004\)
\(Q=\left(2x+y\right)^2+\left(x+1\right)^2+\left(y+2\right)^2+2004>0\) với \(\forall x\)
a) A= \(\left(x^2-2xy+y^2\right)+\left(x^2+10x+25\right)+x^2+1\)1
=\(\left(x-y\right)^2+\left(x+5\right)^2+x^2+1\ge1\)
\(\Rightarrow\)A dương với mọi x,y
\(A=4x^2-12x+15=\left(2x\right)^2-12x+9+6\)
\(=\left(2x-3\right)^2+6\)
Vì \(\left(2x-3\right)^2\ge0\forall x\)\(\Rightarrow A\ge6\)
\(\Rightarrow\)A luôn dương
\(5x^2-10x+15=5\left(x^2-2x+1\right)+10=5\left(x-1\right)^2+10\)
Vì \(\left(x-1\right)^2\ge0\forall x\Rightarrow5\left(x-1\right)^2\ge0\forall x\)
Mà: \(10>0\Rightarrow5\left(x-1\right)^2+10>0\forall x\)\(\Rightarrow5x^2-10x+15>0\Rightarrowđpcm\)