Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = ( x + 2 )3 + ( x - 2 )3 - 2x( x2 + 12 )
= x3 + 6x2 + 12x + 8 + x3 - 6x2 + 12x - 8 - 2x3 - 24x
= ( x3 + x3 - 2x3 ) + ( 6x2 - 6x2 ) + ( 12x + 12x - 24x ) + ( 8 - 8 )
= 0
Vậy giá trị của P không phụ thuộc vào biến
Q = ( x - 1 )3 - ( x + 1 )3 + 6( x + 1 )( x - 1 )
= x3 - 3x2 + 3x - 1 - ( x3 + 3x2 + 3x + 1 ) + 6( x2 - 1 )
= x3 - 3x2 + 3x - 1 - x3 - 3x2 - 3x - 1 + 6x2 - 6
= ( x3 - x3 ) + ( 6x2 - 3x2 - 3x2 ) + ( 3x - 3x ) + ( -1 - 1 - 6 )
= -8
Vậy giá trị của Q không phụ thuộc vào biến
a) \(A=\left(3x-2\right)\left(3x+2\right)-\left(3x+1\right)^2-3.\left(-2x-1\right)\)
\(=\left(3x\right)^2-4-\left(9x^2+6x+1\right)+6x+3\)
\(=9x^2-4-9x^2-6x-1+6x+3\)
\(=-2\) không phụ thuộc vào x
b) \(B=\left(x+1\right)\left(x-1\right)-\left(x-2\right)^2-4.\left(x+3\right)\)
\(=x^2-1-\left(x^2-4x+4\right)-\left(4x+12\right)\)
\(=x^2-1-x^2+4x-4-4x-12\)
\(=-17\)không phụ thuộc vào x.
Câu a :
\(\left(2x+1\right)^2-4x\left(x-5\right)\)
\(=4x^2+4x+1-4x^2+20\)
\(=4x+19\)
Câu b :
\(\left(x+3\right)^2-\left(x+1\right)\left(x-1\right)\)
\(=x^2+6x+9-x^2-1\)
\(=6x-8\)
Câu c :
\(\left(x-5\right)^2-\left(x+2\right)^2\)
\(=\left(x-5-x-2\right)\left(x-5+x+2\right)\)
\(=-7\left(2x-3\right)\)
A = ( 3x )3 + 23 - 27x3 + 6 = 27x3 + 8 - 27x3 + 6 = 14 ( đpcm )
B = x3 + 3x2 + 3x + 1 - ( x3 - 1 ) - 3x2 - 3x = x3 + 1 - x3 + 1 = 2 ( đpcm )
C = 6( x + 2 )( x2 - 2x )( x2 - 2x + 4 ) - 6x3 - 2 ( bạn xem lại đề bài nhé ._. )
D = 2[ ( 3x )3 + 13 ] - 54x3 = 2( 27x3 + 1 ) - 54x3 = 54x3 + 2 - 54x3 = 2 ( đpcm )
a) 2( x - 1 )2 - 4( 3 + x )2 + 2x( x - 5 )
= 2( x2 - 2x + 1 ) - 4( 9 + 6x + x2 ) + 2x2 - 10x
= 2x2 - 4x + 2 - 36 - 24x - 4x2 + 2x2 - 10x
= ( 2x2 - 4x2 + 2x2 ) + ( -4x - 24x - 10x ) + ( 2 - 36 )
= -38x - 34
b) 2( 2x + 5 )2 - 3( 4x + 1 )( 1 - 4x )
= 2( 4x2 + 20x + 25 ) + 3( 4x + 1 )( 4x - 1 )
= 8x2 + 40x + 50 + 3( 16x2 - 1 )
= 8x2 + 40x + 50 + 48x2 - 3
= 56x2 + 40x + 47
c) ( x - 1 )3 - x( x - 3 )2 + 1
= x3 - 3x2 + 3x - 1 - x( x2 - 6x + 9 ) + 1
= x3 - 3x2 + 3x - x3 + 6x2 - 9x
= 3x2 - 6x
d) ( x + 2 )3 - x2( x + 6 )
= x3 + 6x2 + 12x + 8 - x3 - 6x2
= 12x + 8
e) ( x - 2 )( x + 2 ) - ( x + 1 )3 - 2x( x - 1 )2
= x2 - 4 - ( x3 + 3x2 + 3x + 1 ) - 2x( x2 - 2x + 1 )
= x2 - 4 - x3 - 3x2 - 3x - 1 - 2x3 + 4x2 - 2x
= -3x3 + 2x2 - 5x - 5
f) ( a + b - c )2 - ( b - c )2 - 2a( b - c )
= [ ( a + b ) - c ]2 - ( b2 - 2bc + c2 ) - 2ab + 2ac
= [ ( a + b )2 - 2( a + b )c + c2 ] - b2 + 2bc - c2 - 2ab + 2ac
= a2 + 2ab + b2 - 2ac - 2bc + c2 - b2 + 2bc - c2 - 2ab + 2ac
= a2
a) \(2\left(x-1\right)^2-4\left(3+x\right)^2+2x\left(x-5\right)\)
Dùng hẳng đẳng thức thứ nhất + hai :
= \(2\left(x^2-2\cdot x\cdot1+1^2\right)-4\left(3^2+2\cdot3\cdot x+x^2\right)+2x^2-10x\)
= \(2\left(x^2-2x+1\right)-4\left(9+6x+x^2\right)+2x^2-10x\)
= \(2x^2-4x+2-36-24x-4x^2+2x^2-10x\)
= \(-38x-34\)
b) 2(2x + 5)2 - 3(4x + 1)(1 - 4x)
Dùng đẳng thức thứ 1 + 3
= 2[(2x)2 + 2.2x.5 + 52 ] - (-3)[(4x)2 - 12 ]
= 2(4x2 + 20x + 25) - (-3).(16x2 - 1)
= 8x2 + 40x + 50 - (3 - 48x2)
= 8x2 + 40x + 50 - 3 + 48x2
= 56x2 + 40x + 47
c) (x - 1)3 - x(x - 3)2 + 1
Dùng đẳng thức 2 + 5:
= x3 - 3.x2.1 + 3.x.12 - 13 - x(x2 - 2.x.3 + 32) + 1
= x3 - 3x2 + 3x - 1 - x3 + 6x2 - 9x + 1
= (x3 - x3) + (-3x2 + 6x2) + (3x - 9x) + (-1 + 1)
= 3x2 - 6x
d) (x + 2)3 - x2(x + 6)
= x3 + 3.x2.2 + 3.x.22 + 23 - x3 - 6x2
= x3 + 6x2 + 12x + 8 - x3 - 6x2
= (x3 - x3) + (6x2 - 6x2) + 12x + 8 = 12x + 8
e) Dùng đẳng thức thứ 3,4 và 2
= x2 - 4 - (x3 + 3.x2.1 + 3.x.12 + 13) - 2x(x2 - 2.x.1 + 12)
= x2 - 4 - (x3 + 3x2 + 3x + 1) - 2x3 + 4x2 - 2x
= x2 - 4 - x3 - 3x2 - 3x - 1 - 2x3 + 4x2 - 2x
= (x2 - 3x2 + 4x2) + (-4 - 1) + (-x3 - 2x3) + (-3x - 2x)
= 2x2 - 5 - 3x3 - 5x
f) Đặt \(a+b-c=A\)
\(b-c=B\)
= \(A^2-B^2-2AB\)
= \(A^2-2AB+\left(-B\right)^2\)
\(=A^2-2AB+B^2\)
= (A - B)2
= (a + b - c - (b - c))2
= (a + b - c - b + c)2
= a2
A= -10
B= -5
A = (x - 2)(x2 + 2x + 4) - x(x - 2)(x + 2) - 2(2x + 1)
= x(x2 + 2x + 4) - 2(x2 + 2x + 4) - x(x2 - 4) - 2(2x + 1)
= x3 + 2x2 + 4x - 2x2 - 4x - 8 - x3 + 4x - 4x - 2
= (x3 - x3) + (2x2 - 2x2) + (4x - 4x + 4x - 4x) + (-8 - 2) = -10 => không phụ thuộc vào x
B = (x + 1)3 - x(x - 2)2 - 7(x2 + 1) - (1 - x) + 2
= x3 + 3x2 + 3x + 1 - x(x - 2)(x - 2) - 7x2 - 7 - 1 + x + 2
= x3 + 3x2 + 3x + 1 - x(x2 - 4x + 4) - 7x2 - 7 - 1 + x + 2
= x3 + 3x2 + 3x + 1 - x3 + 4x2 - 4x - 7x2 - 7 - 1 + x + 2 = (x3 - x3) + (3x2 + 4x2 - 7x2) + (3x - 4x + x) + (1 - 7 - 1 + 2) = - 5 => không phụ thuộc vào x