Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/a) \(BĐT\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\)(đúng với mọi x, y không âm)
Đẳng thức xảy ra khi x = y
b) \(BĐT\Leftrightarrow\frac{\left(x-y\right)^2}{xy}\ge0\) (đúng với mọi x, y không âm)
"=" <=> x = y
c) BĐT \(\Leftrightarrow2a+2b+2\ge2\sqrt{ab}+2\sqrt{a}+2\sqrt{b}\)
\(\Leftrightarrow\left(a-2\sqrt{ab}+b\right)+\left(a-2\sqrt{a}+1\right)+\left(b-2\sqrt{b}+1\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{a}-1\right)^2+\left(\sqrt{b}-1\right)^2\ge0\) (đúng)
"=" <=> a = b = 1
1/ \(A=\sqrt{7-2\sqrt{7}.1+1}-\sqrt{7-2\sqrt{7}.\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{7}-1\right|-\left|\sqrt{7}-\sqrt{2}\right|\) (thực ra em nghĩ ko cần thêm trị tuyệt đối đâu nhưng thêm cho chắc:D)
\(=\sqrt{7}-1-\sqrt{7}+\sqrt{2}=\sqrt{2}-1\)
2/Em thấy nó sai sai nên thôi:(
\(\frac{a+b}{2}-\sqrt{ab}=\frac{a-2\sqrt{ab}+b}{2}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}=\frac{4b\left(\sqrt{a}-\sqrt{b}\right)^2}{8b}\)
\(=\frac{\left(2\sqrt{b}\right)^2\left(\sqrt{a}-\sqrt{b}\right)^2}{8b}=\frac{\left(2\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)\right)^2}{8b}=\frac{\left(2\sqrt{ab}-2b\right)^2}{8b}\)
vì \(0< =\left(\sqrt{a}-\sqrt{b}\right)^2=a-2\sqrt{ab}+b\Rightarrow2\sqrt{ab}< =a+b\Rightarrow2\sqrt{ab}-2b< =a+b-2b\)
\(\Rightarrow2\sqrt{ab}-2b< =a-b\)
dấu = xảy ra khi và chỉ khi a=b mà a>b(giả thiết)\(\Rightarrow2\sqrt{ab}-2b< a-b\Rightarrow\frac{\left(2\sqrt{ab}-2b\right)^2}{8b}< \frac{\left(a-b\right)^2}{8b}\)
\(\Rightarrow\frac{a+b}{2}-\sqrt{ab}< \frac{\left(a-b\right)^2}{8b}\left(đpcm\right)\)
a: \(A=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{2}{x+\sqrt{x}+1}\)
b: \(A-2=\dfrac{2-2x-2\sqrt{x}-2}{x+\sqrt{x}+1}\)
\(=\dfrac{-2x-2\sqrt{x}}{x+\sqrt{x}+1}=\dfrac{-2\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}< =0\)
=>A<=2
Vì \(x+\sqrt{x}+1>0\) nên A>0
a: \(=\dfrac{3}{2}\sqrt{6}+\dfrac{2}{3}\sqrt{6}-2\sqrt{3}=\dfrac{13}{6}\sqrt{6}-2\sqrt{3}\)
b: \(VT=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\cdot\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)^2\)
c: \(VT=\dfrac{\sqrt{y}}{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}+\dfrac{\sqrt{x}}{\sqrt{y}\left(\sqrt{y}-\sqrt{x}\right)}\)
\(=\dfrac{y-x}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}=\dfrac{-\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)
1. Ta có : \(\left(\sqrt{a}-\sqrt{b}\right)^2>0\Leftrightarrow a-2\sqrt{ab}+b>0\Leftrightarrow a+b>2\sqrt{ab}\Leftrightarrow\frac{1}{\sqrt{ab}}>\frac{2}{a+b}\)
2. Áp dụng từ câu 1) , ta có :
\(\frac{1}{\sqrt{1.2005}}+\frac{1}{\sqrt{2.2004}}+...+\frac{1}{\sqrt{2005.1}}>\frac{2}{1+2005}+\frac{2}{2+2004}+...+\frac{2}{2005+1}\)
\(\Leftrightarrow\frac{1}{\sqrt{1.2005}}+\frac{1}{\sqrt{2.2004}}+...+\frac{1}{\sqrt{2005.1}}< \frac{2.2005}{2006}=\frac{2005}{1003}\)
3. Ta có : \(\left(\frac{x^2+y^2}{x-y}\right)^2=\frac{x^4+2x^2y^2+y^4}{x^2-2xy+y^2}=\frac{x^4+y^4+2}{x^2+y^2-2}\)
Đặt \(t=x^2+y^2,t\ge0\Rightarrow\frac{x^4+y^4+2}{x^2+y^2-2}=\frac{t^2-2+2}{t-2}=\frac{t^2}{t-2}\)
Xét : \(\frac{t-2}{t^2}=\frac{1}{t}-\frac{2}{t^2}=-2\left(\frac{1}{t^2}-\frac{2}{t.4}+\frac{1}{16}\right)+\frac{1}{8}=-2\left(\frac{1}{t}-\frac{1}{4}\right)^2+\frac{1}{8}\le\frac{1}{8}\)
\(\Rightarrow\frac{t^2}{t-2}\ge8\Rightarrow\left(\frac{x^2+y^2}{x-y}\right)^2\ge8\Leftrightarrow\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
\(x^2+x\sqrt{2}+1>0\)
\(\Leftrightarrow\left(x+\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)
\(\Leftrightarrow\left(x+\frac{1}{\sqrt{2}}\right)^2>-\frac{1}{2}\)
=> đpcm
\(x^2+x\sqrt{2}+1=x^2+2.x.\frac{\sqrt{2}}{2}+\left(\frac{\sqrt{2}}{2}\right)^2+\frac{1}{2}=x^2+2.x.\frac{\sqrt{2}}{2}+\frac{1}{2}+\frac{1}{2}\)
\(=\left(x+\frac{\sqrt{2}}{2}\right)^2+\frac{1}{2}\)
Vì \(\left(x+\frac{\sqrt{2}}{2}\right)^2\ge0\left(\forall x\right)\)
Suy ra: \(\left(x+\frac{\sqrt{2}}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\)
Vậy \(x^2+x\sqrt{2}+1>0\)