K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2020

Dùng Tam giác Pascal để khai triển (x+y)^6.Ta có

\(VT=x^6+6x^5y+15x^4y^2+20x^3y^3+15x^2y^4+6xy^5+y^6-6x^3y^3\)

Xét hiệu VT-VP ta có

\(x^6+6x^5y+15x^4y^2+20x^3y^3+15x^2y^4+6xy^5+y^6-6x^3y^3-4x^4y^2-4x^2y^4-x^5y-xy^5=\)

bẠN trừ ik rồi CM biểu thức >=0, ko bk thì hỏi

17 tháng 7 2018

a/ \(x^2-6x+10=x^2-2.x.3+3^2+1=\left(x-3\right)^2+1\)

Với mọi x ta có :

\(\left(x-3\right)^2\ge0\)

\(\Leftrightarrow\left(x-3\right)^2+1>0\)

\(\Leftrightarrow x^2-6x+10>0\)

b/ \(x^2-4x+7=x^2-2.x.2+2^2+3=\left(x-2\right)^2+3\)

Với mọi x ta có :

\(\left(x-2\right)^2\ge0\)

\(\Leftrightarrow\left(x-2\right)^2+3\ge3\)

\(\Leftrightarrow x^2-4x+7\ge3\left(đpcm\right)\)

c/ \(x^2+x+1=x^2+2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Với mọi x ta có :

\(\left(x+\dfrac{1}{2}\right)^2\ge0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

\(\Leftrightarrow x^2+x+1>0\left(đpcm\right)\)

d/ \(x^2+y^2+4x-6y+15=\left(x^2+4x+2^2\right)+\left(y^2-6y+3^2\right)+2=\left(x+2\right)^2+\left(y-3\right)^2+2\)

Với mọi x,y ta có :

\(\left\{{}\begin{matrix}\left(x+2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2+2\ge0\)

\(\Leftrightarrow x^2+y^2+4x-6y+15>0\left(đpcm\right)\)

17 tháng 7 2018

2/ Ta có :

\(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2\)

Vậy \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\left(đpcm\right)\)

3/ \(x^2+y^2=x^2+y^2+2xy-2xy=\left(x+y\right)^2-2xy\)

\(x+y=7;xy=-3\)

\(\Leftrightarrow x^2+y^2=7^2-2.\left(-3\right)=49+6=55\)

22 tháng 7 2016

1not nhac/bai

1) = 3(x-y) +(x+y)(x-y) =(x-y)(x+y+3)

17 tháng 7 2018

2.

Ta có hằng đẳng thức : \(\left(a-b\right)^2=a^2-2ab+b^2\left(1\right)\)

Lại có  \(\left(a+b\right)^2=a^2+2ab+b^2\)

\(\Rightarrow\left(a+b\right)^2-4ab=a^2+2ab-4ab+b^2\)

\(\Leftrightarrow\left(a+b\right)^2-4ab=a^2-2ab+b^2\left(2\right)\)

Từ (1) và (2)  \(\Rightarrow\left(a-b\right)^2=\left(a+b\right)^2-4ab\)( đpcm )

3.

Ta có hằng đẳng thức  \(\left(x+y\right)^2=x^2+2xy+y^2\)

\(\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy\)

Thay  \(x+y=7\)và  \(xy=-3\)vào ta được :

\(x^2+y^2=7^2-2\left(-3\right)\)

\(\Leftrightarrow x^2+y^2=49+6=55\)

Vậy ...

17 tháng 7 2018

1. 

a) Đặt  \(A=x^2-6x+10\)

\(A=\left(x^2-6x+9\right)+1\)

\(A=\left(x-3\right)^2+1\)

Mà  \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow A\ge1>0\)

Vậy ...

b) Đặt \(B=x^2-4x+7\)

\(B=\left(x^2-4x+4\right)+3\)

\(B=\left(x-2\right)^2+3\)

Mà  \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow B\ge3\)

Vậy ...

9 tháng 8 2017

a, 7x^3 + 5 ( x - y )^2 v- 7y^3
= 7 ( x^3 - y^3 ) + 5 ( x-y )^2
= 7 ( x - y )^3 + 5 ( x-y ) ^2
= [ 7 ( x- y ) + 5 ] ( x-y) ^2

17 tháng 7 2019

a) =2x^3-10x^2-2x+3x^2-x

=2x^3-7x^2-3x

17 tháng 7 2019

b) -10x^4y^2z^2+35x^3y^2z^2+4x^4y^2z^2+4x^3y^2z^2

=-6x^4y^2z^2+39x^3y^2z^2