Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a.
Ta luôn có
\(\frac{a}{a+b}>\frac{a}{a+b+c}\) (do a+b < a+b+c)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
Cộng theo từng vế rồi rút gọn ta đươc đpcm
Cảm ơn b nhé. B biết làm.câu b c d không giúp m với
\(a,A=a\left(a-6\right)+10=a^2-6a+9+1=\left(a-3\right)^2+1>0\)\(b,\left(x-3\right)\left(x-5\right)+4=x^2-8x+15+4=\left(x^2-8x+16\right)+3=\left(x-4\right)^2+3>0\)
\(c,a^2+a+1=\left(a^2+a+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(a+\dfrac{1}{2}\right)^2+\dfrac{3}{2}>0\)
a(a-6)+10 = a2-6a+10
= (a2-6a+9)+1
=( x-3)^2 +1 >0
(x-5)(x-3)+4 = x2-8x+19
=(x2-8x+16)+4
=(x-4)2+4>4 >0
( click đúng và kết bạn nha )
Bài 2:
a: =>(4x-1)2=0
=>4x-1=0
hay x=1/4
b: =>(x+4)(x-2)=0
=>x=-4 hoặc x=2
c: =>x2+2x+1+y2+2y+1=0
\(\Leftrightarrow\left(x+1\right)^2+\left(y+1\right)^2=0\)
=>x=-1và y=-1
c: (3x-2)(x+3)<0
=>x+3>0 và 3x-2<0
=>-3<x<2/3
d: \(\dfrac{x-2}{x-10}>=0\)
=>x-10>0 hoặc x-2<=0
=>x>10 hoặc x<=2
e: \(3x^2+7x+4< 0\)
\(\Leftrightarrow3x^2+3x+4x+4< 0\)
=>(x+1)(3x+4)<0
=>-4/3<x<-1
1) =a^2 -6a +10
= (a-3)^2 +1
ta có (a-3)^2 lớn hơn hoặc bằng 0
suy ra (a-3)^2 +1 lớn hơn hoặc bằng 1
đấu bằng xảy ra khi a-3=0
suy ra a=3
a, Ta có :
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)
\(\Rightarrow(a+b)^2\ge4ab\)
\(\Rightarrow(a-b)^2\ge0(đpcm)\)
Mình để cho dấu lớn bằng để dễ hiểu nha bạn
c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)
Dấu " = "xảy ra khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)
Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm
Còn câu b và d bạn tự làm nhé
Chúc bạn học tốt
\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)
\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)
dấu ''='' xảy ra khi và chỉ khi a=b
\(b,x+\frac{1}{x}\ge2\)
\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)
\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)
dấu''='' xảy ra khi và chỉ khi x=1
áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên) =>GTNN là 2
dấu ''='' xay ra khi và chỉ khi x=1
\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)
=> GTNN là 1 tại x=2
\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)
vì -(x+2 )-6 <-6
a) \(x^2+x+1=x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
b) \(x\left(x-6\right)+10=x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1>0\)