![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
A = a3 - a
A = a.(a2 - 1)
A = a.(a-1).(a+1)
A = (a-1).a.(a+1)
Vì (a-1).a.(a+1) là tích 3 số tự nhiên liên tiếp nên (a-1).a.(a+1) chia hết cho 2 và 3
Do (2,3) = 1 => (a-1).a.(a+1) chia hết cho 6 => A chia hết cho 6
Câu A lm đc thì các câu B,C,D trở nên rất đơn giản
B = a3 - a + 6a
Do a3 - a chia hết cho 6, 6a chia hết cho 6
=> B chia hết cho 6
C = a3 + 11a
C = a3 - a + 12a
Do a3 - a chia hết cho 6, 12a chia hết cho 6
=> C chia hết cho 6
D = a3 - 19a
D = a3 - a - 18a
Do a3 - a chia hết cho 6, 18a chia hết cho 6
=> D chia hết cho 6
![](https://rs.olm.vn/images/avt/0.png?1311)
a3 + b3 + c3 + 5a + 5b + 5c
= a3 - a + b3 - b + c3 - c + 6a + 6b + 6c
= a(a2 - 1) + b(b2 - 1) + c(c2 - 1) + 6a + 6b + 6c
= a(a - 1)(a + 1) + b(b - 1)(b + 1) + c(c - 1)(c + 1) + 6(a + b + c)
a;b;c \(\in Z\) nên a(a - 1)(a + 1); b(b - 1)(b + 1); c(c - 1)(c + 1) là tích 3 số nguyên liên tiếp
=> a(a - 1)(a + 1); b(b - 1)(b + 1); c(c - 1)(c + 1) chia hết cho 3
Mà 6(a + b + c) chia hết cho 6
Do đó a(a - 1)(a + 1) + b(b - 1)(b + 1) + c(c - 1)(c + 1) + 6(a + b + c) chia hết cho 6
hay a3 + b3 + c3 + 5a + 5b + 5c chia hết cho 6 (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
thêm đk \(a\in Z\)
\(M=a^3-a+6a\)
\(\Rightarrow M=a\left(a^2-1\right)+6a\)
\(\Rightarrow M=\left(a-1\right)a\left(a+1\right)+6a\)
+ \(\left(a-1\right)a\left(a+1\right)\) là tích 3 số nguyên liên tiếp
\(\Rightarrow\left\{{}\begin{matrix}\left(a-1\right)a\left(a+1\right)⋮2\\\left(a-1\right)a\left(a+1\right)⋮3\end{matrix}\right.\)
\(\Rightarrow\left(a-1\right)a\left(a+1\right)⋮6\)
\(\Rightarrow\left(a-1\right)a\left(a+1\right)+6a⋮6\)
\(\Rightarrow M⋮6\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có a^3+5a= a^3-a+6a
= a(a^2-1)+6a
= a(a-1)(a+1)+6a
vì với a thuộc z thì a, a-1,a+1 là 3 số nguyên liên tiếp nên trong 3 số có 1 số chia hết cho 3 và ít nhất 1 số chia hết cho 2
=> a(a-1)(a+1) chia hết cho 2 và 3
mà (2;3)=1 nên a(a-1)(a+1) chia hết cho 6
lại có 6a chia hết cho 6 với mọi a thuộc z
=> a(a-1)(a+1) +6a chia hết cho 6
hay a^3+5a chia hết cho 6
cm bằng qui nạp
thử n=1 ta có n^3+5n = 6 => dúng
giả sử đúng với n =k
ta cm đúng với n= k+1
(k+1)^3+5(k+1) = k^3 +5k + 3k^2 +3k +6
vì k^3 +5k chia hết cho 6, và 6 chia hết cho 6 nên ta cần cm 3k^2 +3k chia hết cho 6 <=> k^2 +k chia hết cho 2
mà k(k +1) chia hết cho 2vì nếu k lẻ thì k+1 chẳn => chia hết
nế k chẳn thì đương nhiên chia hết
vậy đúng n= k+ 1
theo nguyên lý qui nạp ta có điều phải chứng minh
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì \(a\) không chia hết cho \(3\) nên \(a\) có dạng \(a=3k+1\) hoặc \(a=3k+2\) \(\left(k\in Z\right)\)
Nếu \(a=3k+1\) thì \(a^2=\left(3k+1\right)^2=9k^2+6k+1\) chia \(3\) dư \(1\)
Nếu \(a=3k+2\) thì \(a^2=\left(3k+2\right)^2=9k^2+9k+8\) chia \(3\) dư \(1\)
Vậy, nếu \(a\) không chia hết cho \(3\) thì \(a^2\) chia \(3\) dư \(1\) \(\left(1\right)\)
Tương tự, ta cũng có nếu \(b\) không chia hết cho \(3\) thì \(b^2\) chia \(3\) dư \(1\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) , suy ra \(a^2-b^2\) chia hết cho \(3\) \(\left(3\right)\)
Ta có: \(a^6-b^6=\left(a^2-b^2\right)\left[\left(a^2\right)^2+a^2b^2+\left(b^2\right)^2\right]=\left(a^2-b^2\right)\left[\left(a^2\right)^2-2a^2b^2+\left(b^2\right)^2+3a^2b^2\right]\)
\(=\left(a^2-b^2\right)\left[\left(a^2-b^2\right)+3a^2b^2\right]\)
Theo chứng minh trên, \(a^2-b^2\) chia hết cho \(3\) nên \(\left(a^2-b^2\right)^2\) chia hết cho \(3\)
Lại có: \(3a^2b^2\) chia hết cho \(3\) với mọi \(a;b\in Z\)
nên \(\left(a^2-b^2\right)+3a^2b^2\) chia hết cho \(3\) \(\left(4\right)\)
Từ \(\left(3\right)\) và \(\left(4\right)\) suy ra \(\left(a^2-b^2\right)\left[\left(a^2-b^2\right)+3a^2b^2\right]\) chia hết cho \(3.3\) hay \(a^6-b^6\) chia hết cho \(9\) \(\left(đpcm\right)\)
a^6-b^6=(a^3-b^3)(a^3+b^3)=(a-b)(a^2+ab+b^2)(a+b)(a^2-ab+b^2) dung hang dang thuc
Vi a,b ko chia het cho 3 (1)
suy ra TH1 a=3k+1, b=3q+2 hoacTH2 a=3k+2, b=3q+1
TH1
a+b=3k+3q+3 chia het cho 3
a^2 va b^2 la so chinh phuong nen chia 3 du 0 hoac 1 ma a,b ko chia het cho 3
suy ra a^2, b^2 chia 3 du 1
suy ra a^2+b^2 chia 3 du 2
Lai co a=3k+1, b=3q+2 suy ra ab chia 3 du 2
Tu do suy ra a^2-ab+b^2 chia het cho 3 (2)
tu 1 va 2 so chia het cho 9
TH2 tuong tu
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)
Đây là tích của 3 số nguyên liên tiếp nên trong 3 số nguyên liên tiếp tồn tại 1 bội số của 2 và 3
\(\Rightarrow a\left(a-1\right)\left(a+1\right)⋮2;3\)
Mà \(\left(2,3\right)=1\Rightarrow a\left(a-1\right)\left(a+1\right)⋮6\)
\(\Rightarrow a^3-a⋮6\left(1\right)\)
CMTT , ta có : \(b^3-b⋮6;c^3-c⋮6\left(2\right)\)
Từ ( 1 ) ; ( 2 )
\(\Rightarrow a^3-a+b^3-b+c^3-c⋮6\)
\(\Rightarrow\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\)
Mà \(a+b+c⋮6\)
\(\Rightarrow a^3+b^3+c^3⋮6\left(đpcm\right)\)