Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cm A<1/2
và B<3/2 thì có thể nhưng bất đẳng thức thì ko có đâu
Bài a:
1.3.5......199 = 1.2.3.4......199.200/2.4.6.....200
= 1.2.3.4.........199.200/1.2.3.4....100.2100
=101.102.....200/2.2......2.2
=101/2 . 102/2 . 103/2 . ..... . 200/2
a)\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}<1\)
\(\Rightarrow2M=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}<1\)
\(2M-M=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}\right)<1\)
\(\Rightarrow M=1-\frac{1}{2016^2}\)<1
=>(DPCM)
CÂU b và c làm tương tự
A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}\)
A <\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}\)
A < \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)
A < \(1-\frac{1}{9}=\frac{8}{9}\)
A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}\)
A > \(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
A > \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
A > \(\frac{1}{2}-\frac{1}{10}\)
A > \(\frac{2}{5}\)
=> \(\frac{2}{5}< A< \frac{8}{9}\)
những ai thích xem minecraft và blockman go thì hãy xem kênh youtube của mik kênh mik là M.ichibi các bn nhớ sud và chia sẻ cho nhiều người khác nhé
a) \(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)
\(N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)
Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}< 1\)( vì n \(\ge\)2 )
\(\Rightarrow N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}.1=\frac{1}{4}\)
Vậy \(N< \frac{1}{4}\)
b) \(P=\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{n!}\)
\(P=2!\left(\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+...+\frac{1}{n!}\right)\)
\(P< 2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{\left(n-1\right).n}\right)\)
\(P< 2.\left(\frac{1}{2}-\frac{1}{n}\right)=1-\frac{2}{n}< 1\)
Vậy \(P< 1\)
ta có A< 1/1x2+1/2x3+...1/n-1xn+1
ta có A<1-1/(n-1)(n+1)<1
=> A <1