Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:(a10+b10)(a2+b2)-(a8+b8)(a4+b4)
=a12+b12+a2b10+a10b2-a12-b12-a8b4-a4b8
=a2b2(a8+b8-a6b2-a2b6)
=a2b2[a6(a2-b2)-b6(a2-b2)]
=a2b2(a2-b2)(a6-b6)
=a2b2(a2-b2)(a2-b2)(a4+a2b2+b4)
=a2b2(a2-b2)2(a4+a2b2+b4)
Do a2b2\(\ge\)0 với mọi a;b
(a2-b2)2\(\ge\)0 với mọi a;b
a4+a2b2+b4>0 với mọi a;b(bình phương thiếu)
=>a2b2(a2-b2)2(a4+a2b2+b4)\(\ge\)0 với mọi a;b
=>(a10+b10)(a2+b2)\(\ge\)(a8+b8)(a4+b4)
Ta có bất đẳng thức Bunhiacopski : \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
Dấu = xảy ra khi \(\dfrac{a}{x}=\dfrac{b}{y}\)
\(\left[\left(a^5\right)^2+\left(b^5\right)^2\right]\left(a^2+b^2\right)\ge\left(a^6+b^6\right)^2\) (1)
\(\left[\left(a^4\right)^2+\left(b^4\right)^2\right]\left[\left(a^2\right)^2+\left(b^2\right)^2\right]\ge\left(a^6+b^6\right)^2\) (2)
Trừ từng vế của 2 bất đẳng thức (1)(2) ta dược : \(\left[\left(a^5\right)^2+\left(b^5\right)^2\right]\left(a^2+b^2\right)-\left[\left(a^4\right)^2+\left(b^4\right)^2\right]\left[\left(a^2\right)^2+\left(b^2\right)^2\right]\ge\left(a^6+b^6\right)^2-\left(a^6+b^6\right)^2\)
\(\Leftrightarrow\) \(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)-\left(a^8+b^8\right)\left(a^4+b^4\right)\) \(\ge\) 0
\(\Leftrightarrow\) \(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)\ge\left(a^8+b^8\right)\left(a^4+b^4\right)\)
Dấu bằng xảy ra khi a=b
Áp dụng bất đẳng thức \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\) ta có:
\(8\left(a^4+b^4\right)\ge4\left(a^2+b^2\right)^2=\left[2\left(b^2+c^2\right)\right]^2\ge\left(a+b\right)^4\).
1. BĐT tương đương với \(6\left(a^2+b^2\right)-2ab+8-4\left(a\sqrt{b^2+1}+b\sqrt{a^2+1}\right)\ge0\)
\(\Leftrightarrow\left[a^2-4a\sqrt{b^2+1}+4\left(b^2+1\right)\right]+\left[b^2-4b\sqrt{a^2+1}+4\left(a^2+1\right)\right]\)\(+\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(a-2\sqrt{b^2+1}\right)^2+\left(b-2\sqrt{a^2+1}\right)^2+\left(a-b\right)^2\ge0\)(đúng)
=> Đẳng thức không xảy ra
2. \(a^4+b^4+c^2+1\ge2a\left(ab^2-a+c+1\right)\)
\(\Leftrightarrow a^4+b^4+c^2+1\ge2a^2b^2-2a^2+2ac+2a\)
\(\Leftrightarrow\left(a^4-2a^2b^2+b^4\right)+\left(c^2-2ac+a^2\right)+\left(a^2-2a+1\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(c-a\right)^2+\left(a-1\right)^2\ge0\)
Câu 1:
Ta có: \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)
\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{2^2}-ab\ge0\)
\(\Leftrightarrow\dfrac{a^2+2ab+b^2-4ab}{4}\ge0\)
\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)
\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\) (1)
Ta có: \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)
\(\Leftrightarrow\dfrac{a^2+b^2}{2}-\dfrac{\left(a+b\right)^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{2a^2-2b^2-a^2-2ab-b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{a^2-2ab-b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)
\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\) (2)
Từ (1) và (2) \(\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)
5 , a3+b3+c3\(\ge\) 3abc
\(\Leftrightarrow\) a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc\(\ge\) 0
\(\Leftrightarrow\) (a+b)3+c3-3ab(a+b+c) \(\ge0\)
\(\Leftrightarrow\) (a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c) \(\ge0\)
\(\Leftrightarrow\) (a+b+c)(a2+b2+c2-ab-bc-ca)\(\ge0\) (1)
ta co : a,b,c>0 \(\Rightarrow\)a+b+c>0 (2)
(a-b)2+(b-c)2+(c-a)2\(\ge0\)
<=> 2a2+2b2+2c2-2ac-2cb-2ab\(\ge0\)
<=>a2+b2+c2-ab-bc-ac\(\ge\) 0 (3)
Từ (1)(2)(3)=> pt luôn đúng
\(a.\) Ta có : \(\left(a-b\right)^2\) ≥ \(0\) ∀\(ab\)
⇔ \(a^2+b^2\text{ ≥}2ab\)
\(\text{⇔}a^4+2a^2b^2+b^4\text{≥}4a^2b^2\)
\(\text{⇔}a^4+b^4\text{≥}2a^2b^2\)
\(\text{⇔}a^4+b^4\text{≥ }\dfrac{1}{2}\left(a^2+b^2\right)^2\)
Cmtt , \(a^2+b^2\text{≥ }\dfrac{1}{2}\left(a+b\right)^2 \)
⇒ \(a^4+b^4\text{≥ }\dfrac{1}{8}\left(a+b\right)^4\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(a^4+b^4)(1+1)\geq (a^2+b^2)^2\Rightarrow a^4+b^4\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2\Rightarrow a^2+b^2\geq \frac{(a+b)^2}{2}$
Do đó:
$a^4+b^4\geq \frac{(a+b)^4}{8}$
$\Rightarrow 8(a^4+b^4)\geq (a+b)^4$ (đpcm)
Dấu "=" xảy ra khi $a=b$
$\Rightarrow