\(8^5+2^{11}\)chia hết cho 17

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(8^5+2^{11}=\left(2^{11}\right)^4+2^{11}=2^{11}.\left(2^4+1\right)=17.2^{11}⋮17\left(đpcm\right)\)

13 tháng 6 2017

8^5+2^11
=(2^3)^5+2^11
=2^15+2^11
=2^11(1+2^4)
=2^11.17
Vì: 2^11.17 có thừa số 17 nên chia hết cho 17 (đpcm)

18 tháng 10 2022

a: \(=35^{2018}\left(35-1\right)=35^{2018}\cdot34⋮17\)

b: \(=43^{2018}\left(43+1\right)=43^{2018}\cdot44⋮11\)

d: \(=6mn-4m-9n+6-6mn+9m+4n-6\)

=5m-5n=5(m-n) chia hết cho 5

7 tháng 8 2016

\(8^5+2^{11}=2^{15}+2^{11}\)

                \(=2^{11}.2^4+2^{11}.1\)

                \(=2^{11}.\left(16+1\right)\)

                \(=2^{11}.17\)

7 tháng 8 2016

 8^8+2^20 
=(2^3)^8+2^20 
=2^(3.8)+2^20 
=2^24+2^20 
=2^20.2^4+2^20 
=2^20.(2^4+1) 
=2^20.17 chia hết cho 17 

\(a;43^2+43.17=43\left(43+17\right)=43.60⋮60\left(đpcm\right)\)

\(b;27^5-3^{11}=3^{15}-3^{11}=3^{11}\left(3^4-1\right)=3^{11}.80⋮80\left(đpcm\right)\)

3 tháng 9 2018

a,  11n+2+122n+1

= 11n.121+12.122n

= 11n.(133-12)+12.122n

= 11n.133-11nn .12+12.122n

=12.(144n-11n)+11n. 133

Có 144nn-11n \(⋮\)144-11=133

11n.133\(⋮\)133

=> dpcm

2 tháng 6 2018

a) \(a^2-a=a\left(a-1\right)⋮2\) ( Tích 2 số nguyên liên tiếp ⋮ 2 )

b) \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)⋮3\)( Tích 3 số nguyên liên tiếp ⋮ 3)

c) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2+5-4\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4\right)+5a\left(a-1\right)\left(a+1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)

Ta có:

\(a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)\) tích 5 số nguyên liên tiếp ⋮ 5

5a (a-1)(a+1) ⋮ 5

Suy ra: a5 - a ⋮ 5

Câu d : Ta có :

\(a^7-a\)

\(=a\left(a^6-1\right)\)

\(=a\left(a^3-1\right)\left(a^3+1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2+a+1\right)\left(a^2-a+1\right)\)

Nếu : \(a=7k\) thì \(a\) chia hết cho 7

Nếu : \(a=7k-1\) thì \(a+1\) chia hết cho 7

Nếu : \(a=7k+1\) thì \(a-1\) chia hết cho 7

Nếu : \(a=7k+2\) thì \(a^2+a+1=49k^2+35k+7\) chia hết cho 7

Nếu : \(a=7k+3\) thì \(a^2-a+1=49k^2+35k+7\) chia hết cho 7

Vì mọi trường hợp đều chia hết cho 7 .

\(\Rightarrow a^7-a⋮7\left(đpcm\right)\)