Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8^5+2^11
=(2^3)^5+2^11
=2^15+2^11
=2^11(1+2^4)
=2^11.17
Vì: 2^11.17 có thừa số 17 nên chia hết cho 17 (đpcm)
a: \(=35^{2018}\left(35-1\right)=35^{2018}\cdot34⋮17\)
b: \(=43^{2018}\left(43+1\right)=43^{2018}\cdot44⋮11\)
d: \(=6mn-4m-9n+6-6mn+9m+4n-6\)
=5m-5n=5(m-n) chia hết cho 5
\(8^5+2^{11}=2^{15}+2^{11}\)
\(=2^{11}.2^4+2^{11}.1\)
\(=2^{11}.\left(16+1\right)\)
\(=2^{11}.17\)
\(a;43^2+43.17=43\left(43+17\right)=43.60⋮60\left(đpcm\right)\)
\(b;27^5-3^{11}=3^{15}-3^{11}=3^{11}\left(3^4-1\right)=3^{11}.80⋮80\left(đpcm\right)\)
a, 11n+2+122n+1
= 11n.121+12.122n
= 11n.(133-12)+12.122n
= 11n.133-11nn .12+12.122n
=12.(144n-11n)+11n. 133
Có 144nn-11n \(⋮\)144-11=133
11n.133\(⋮\)133
=> dpcm
a) \(a^2-a=a\left(a-1\right)⋮2\) ( Tích 2 số nguyên liên tiếp ⋮ 2 )
b) \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)⋮3\)( Tích 3 số nguyên liên tiếp ⋮ 3)
c) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2+5-4\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4\right)+5a\left(a-1\right)\left(a+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)
Ta có:
\(a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)\) tích 5 số nguyên liên tiếp ⋮ 5
5a (a-1)(a+1) ⋮ 5
Suy ra: a5 - a ⋮ 5
Câu d : Ta có :
\(a^7-a\)
\(=a\left(a^6-1\right)\)
\(=a\left(a^3-1\right)\left(a^3+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2+a+1\right)\left(a^2-a+1\right)\)
Nếu : \(a=7k\) thì \(a\) chia hết cho 7
Nếu : \(a=7k-1\) thì \(a+1\) chia hết cho 7
Nếu : \(a=7k+1\) thì \(a-1\) chia hết cho 7
Nếu : \(a=7k+2\) thì \(a^2+a+1=49k^2+35k+7\) chia hết cho 7
Nếu : \(a=7k+3\) thì \(a^2-a+1=49k^2+35k+7\) chia hết cho 7
Vì mọi trường hợp đều chia hết cho 7 .
\(\Rightarrow a^7-a⋮7\left(đpcm\right)\)
\(8^5+2^{11}=\left(2^{11}\right)^4+2^{11}=2^{11}.\left(2^4+1\right)=17.2^{11}⋮17\left(đpcm\right)\)