Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\forall x\in R\)
Ta có: \(x^2-4x+5=\left(x^2-2.x.2+2^2\right)+1\)
\(=\left(x-2\right)^2+1\)
Vì \(\left(x-2\right)^2\ge0\left(\forall x\right);1\ge0\)
Vậy \(x^2-4x+5\ge0\left(\forall x\right)\)
a) \(x^2-5x+8=\left(x^2-5x+6,25\right)+1,75=\left(x-2,5\right)^2+1,75\ge1,75>0\rightarrowđpcm\)
b) \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1=-\left(2x+1\right)^2-1\le-1< 0\rightarrowđpcm\)
A =x2 -5x +8 >0 với mọi x
= x2-5x+\(\dfrac{25}{4}+\dfrac{7}{4}\)
=\(\left(x-\dfrac{5}{2}\right)^2+\dfrac{7}{4}\)
do \(\left(x-\dfrac{5}{2}\right)^2\ge0\forall x\)
=> \(\left(x-\dfrac{5}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
=> A luôn lớn hơn 0 vs mọi x
B= -4x2 -4x-2 < 0 với mọi x
=-(4x2+4x+2)
=-4x2-4x-1-1
=-\(\left(4x^2+4x+1+1\right)\)
=-\(\left[4\left(x^2+x+\dfrac{1}{4}\right)+1\right]\)
= -\(\left[4\left(x+\dfrac{1}{2}\right)^2+1\right]\)
=-4\(\left(x+\dfrac{1}{2}\right)^2-1\)
do \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\)
=> -4 \(\left(x+\dfrac{1}{2}\right)^2\le0\)
=> \(-4\left(x+\dfrac{1}{2}\right)^2-1\le-1\)
vậy B luôn nhỏ hơn 0 vs mọi x
a) \(A=x^2+2x+5=\left(x+1\right)^2+4\ge4>0\)
Vậy MIN A = 4 khi x = -1
b) \(B=x^2+4x+12=\left(x+2\right)^2+8\ge8>0\)
Vậy MIN B = 8 khi x = -2
c) \(C=x^2+6x+31=\left(x+3\right)^2+22\ge22>0\)
Vậy MIN C = 22 khi x = -3
d) \(D=4x^2+4x+35=\left(2x+1\right)^2+34\ge34>0\)
Vậy MIN D = 34 khi x = -1/2
\(A=x^2+2x+5\)
\(A=\left(x^2+2.x.1+1^2\right)+4\)
\(A=\left(x+1\right)^2+4\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^2+4\ge4\forall x\)
\(\Rightarrow A>0\forall x\)
\(A=4\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)
Vậy \(A_{min}=4\Leftrightarrow x=-1\)
\(B=x^2+4x+12\)
\(B=\left(x^2+2.x.2+2^2\right)+8\)
\(B=\left(x+2\right)^2+8\)
đến đó tương tự câu a
\(C=x^2+6x+31\)
\(C=\left(x^2+2.x.3+3^2\right)+22\)
\(C=\left(x+3\right)^2+22\)
đến đó tương tự câu a
\(D=4x^2+4x+35\)
\(D=\left(2x\right)^2+2.2x.1+1+34\)
\(D=\left(2x+1\right)^2+34\)
đến đó tương tự câu a
Tham khảo nhé~
a) Ta có:
\(x^2-x+1\)
\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Mà: \(\left(x-\dfrac{1}{2}\right)^2\ge0\) và \(\dfrac{3}{4}>0\) nên
\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow x^2-x+1>0\forall x\)
\(4x^2+x+5=\left(2x\right)^2+x+5=\left(2x\right)^2+2.2x.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}+5\)
\(=\left(2x+\frac{1}{4}\right)^2+\frac{79}{16}\)
Vì \(\left(2x+\frac{1}{4}\right)^2\ge0=>\left(2x+\frac{1}{4}\right)^2+\frac{79}{16}\ge\frac{79}{16}>0\) (với mọi x)
Vậy \(4x^2+x+5>0\left(đpcm\right)\)
Đề là gì vậy bạn Minh
Có phải phân tích đa thức thành nhân tử không
4x . x + x + 5