K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2019

Đặt \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=k\Rightarrow\left\{{}\begin{matrix}a=2018k\\b=2019k\\c=2020k\end{matrix}\right.\)

\(M=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\\ M=4\left(2018k-2019k\right)\left(2019k-2020k\right)-\left(2020k-2018k\right)^2\\ M=4\cdot\left(-1\right)\cdot\left(-1\right)\cdot k^2-\left(2k\right)^2\\ M=4k^2-4k^2=0\)

21 tháng 12 2019

Cảm ơn bạn

12 tháng 8 2019

ko bieets banj oi

4 tháng 11 2018

Cứu mình với 9:00 sáng nay mình nộp bài rùikhocroi

17 tháng 8 2021

bạn ơi bạn có câu trả lời chưa, cho mik xin vs

 

5 tháng 2 2020

Ta có: \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=\frac{a-b}{2018-2019}=\frac{b-c}{2019-2020}=\frac{a-c}{2018-2020}.\)

5 tháng 11 2019

Đặt \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=k\)=> \(\hept{\begin{cases}a=2018k\\b=2019k\\c=2020k\end{cases}}\)

Khi đó, ta có: 4(2018k - 2019k)(2019k - 2020k) = 4(-k)(-k) = 4(-k)2 = 4k2 (1)

        (2018k - 2020k)2 = (-2k)2 = 4k2 (2)

Từ (1) và (2) => 4(a - b)(b - c) = (a - c)2

15 tháng 6 2019

Đặt a/2018 = b/2019 = c/2020 

=> a = 2018k ; b = 2019k ; c = 2020k

Khi đó, ta có :

(2018k - 2020k)2 = 4k2 (1)

4.(2018k - 2019k)(2019k - 2020k) = 4.(-k).(-k) = 4k2 (2)

Từ (1) và (2) => đpcm

16 tháng 6 2019

Mình làm cách lớp 7 kiểu khác nhé:

Áp dụng tính chất của dãy tỉ số bằng nhau : 

\(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=\frac{a-c}{2018-2020}=\frac{a-b}{2018-2019}=\frac{b-c}{2019-2020}\)

\(\Rightarrow\frac{a-c}{-2}=\frac{a-b}{-1}=\frac{b-c}{-1}\Leftrightarrow a-c=2\left(a-b\right)=2\left(b-c\right)\&a-b=b-c\)

\(\Leftrightarrow\left(a-c\right)^2=2\left(a-b\right).2\left(b-c\right)=4\left(a-b\right)\left(b-c\right)\left(đpcm\right).\)

Ta có :

\(\frac{a+b-b-c}{2018-2019}=\frac{a-c}{-1}\)

\(\frac{b+c-c-a}{2019-2020}=\frac{b-a}{-1}\)

\(\frac{b-c}{2018-2020}=\frac{b-c}{-2}\)     

Đặt \(\frac{a-c}{-1}=\frac{b-a}{-1}=\frac{b-c}{-2}=k\left(k\ne0\right)\)

\(\Rightarrow\hept{\begin{cases}\frac{a-c}{-1}=k\\\frac{b-a}{-1}=k\\\frac{b-c}{-2}=k\end{cases}\Rightarrow\hept{\begin{cases}a-c=-k\\b-a=-k\\b-c=k.\left(-2\right)\end{cases}}}\)

\(\Rightarrowđpcm\)

12 tháng 12 2020

Đặt \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=k\Rightarrow\hept{\begin{cases}a=2018k\\b=2019k\\c=2020k\end{cases}}\)

Khi đó 4(a - b)(b - c) = 4(2018k - 2019k)(2019k - 2020k)

= 4(-k).(-k) 

= 4k2 (1)

Lại có (c - a)2 = (2020k - 2018k)2 = (2k)2 = 4k2 (2)

Từ (1)(2) => 4(a - b)(b - c) = (c - a)2