Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN của 2n + 1 và 3n + 1 là d, ta có:
\(2n+1⋮d\) và \(3n+1⋮d\)
\(\Rightarrow3\left(2n+1\right)⋮d;2\left(3n+1\right)⋮d\)
\(\Rightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)
\(\Rightarrow6n+3-6n-2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow\frac{2n+1}{3n+1}\)là p/s tối giản với mọi n
De \(\frac{5n+3}{3n+2}\)la phan so toi gian (n thuoc N)
thi 5n+3 chia het 3n+2
suy ra 3n+2 chia het 3n+2 suy ra 15n+10 chia het 3n+2
va 5n+3 chia het 3n+2 suy ra 15n+9 chia het 3n+2
suy ra ( 15n+10 - 15n+9 ) chia het 3n+2
suy ra 1 chia het 3n+2
suy ra 3n+2 thuoc uoc cua 1 la 1 ,-1
vi n thuoc N nen 3n+2=1
suy ra 3n=1-2
suy ra n=-1/3( loai)
vay x thuoc rong
b: Gọi d=ƯCLN(2n+3;4n+8)
=>4n+8-2(2n+3) chia hết cho d
=>2 chia hết cho d
mà 2n+3 là số lẻ
nên d=1
=>PSTG
c: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
\(\frac{3n}{3n+1}\).
Gọi ƯCLN ( 3n ; 3n + 1 ) là d .
\(\Rightarrow\)3n ⋮ d
3n + 1 ⋮ d
\(\Rightarrow\)3n + 1 - 3n ⋮ d
\(\Rightarrow\) 1 ⋮ d
\(\Rightarrow\) d = 1 .
\(\Rightarrow\) 3n và 3n + 1 là hai số nguyên tố cùng nhau .
Vậy \(\frac{3n}{3n+1}\) là phân số tối giản .
:)
Gọi \(ƯCLN\left(3n;3n+1\right)\) là \(d\)
\(\Rightarrow\)\(3n⋮d\) và \(\left(3n+1\right)⋮d\)
\(\Rightarrow\)\(\left(3n-3n-1\right)⋮d\)
\(\Rightarrow\)\(\left(-1\right)⋮d\)
\(\Rightarrow\)\(d\inƯ\left(-1\right)\)
Mà \(Ư\left(-1\right)=\left\{1;-1\right\}\)
\(\Rightarrow\)\(ƯCLN\left(3n;3n+1\right)=\left\{1;-1\right\}\)
Vậy \(\frac{3n}{3n+1}\) là phân số tối giản
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
\(\frac{2n+3}{4n+1}\)= \(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1
=>n=1
mình ko chắc là đúng nha
chỉ cần chứng minh 2 số này nguyên tố cùng nhau