Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(^{x^2+4x>0}\)
\(x^2+4x+7>hoac=7\)
\(\Rightarrow x^2+4x+7>0\)
=} đa thức x^2 +4x+7 vô nghiệm
nhớ k cho mình nhé
Ta có : Denta phẩy = 2^2 - 7.1 = 4-7= -3 <0 -> phương trình vô nghiệm
Câu này bạn thiếu đề bài : x^2 + 4x +7 =0 not x^2 + 4x +7
Với lại máy không viết được denta nên khi trình bày bạn tự viết
x4+2x2+1
Ta có :
x4 ≥ 0 ∀ x
x2 ≥ 0 ∀ x => 2x2 ≥ 0 ∀ x
=> x4+2x2+1 ≥ 1 >0
Suy ra đa thức trên vô nghiệm
a, Cho \(x^2+2022x=0\Leftrightarrow x\left(x+2022\right)=0\Leftrightarrow x=0;x=-2022\)
b, \(3x^2+7x+4=0\Leftrightarrow\left(x+1\right)\left(3x+4\right)=0\Leftrightarrow x=-1;x=-\dfrac{4}{3}\)
c, \(2\left(x^2+2x+1-1\right)+5=0\Leftrightarrow2\left(x+1\right)^2+3=0\)(vô lí)
Vậy đa thức ko có nghiệm tm
a) cho A(x) = 0
\(=>2x^2-4x=0\)
\(x\left(2-4x\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\4x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
b)\(B\left(y\right)=4y-8\)
cho B(y) = 0
\(4y-8=0\Rightarrow4y=8\Rightarrow y=2\)
c)\(C\left(t\right)=3t^2-6\)
cho C(t) = 0
\(=>3t^2-6=0=>3t^2=6=>t^2=2\left[{}\begin{matrix}t=\sqrt{2}\\t=-\sqrt{2}\end{matrix}\right.\)
d)\(M\left(x\right)=2x^2+1\)
cho M(x) = 0
\(2x^2+1=0\Rightarrow2x^2=-1\Rightarrow x^2=-\dfrac{1}{2}\left(vl\right)\)
vậy M(x) vô nghiệm
e) cho N(x) = 0
\(2x^2-8=0\)
\(2\left(x^2-4\right)=0\)
\(2\left(x^2+2x-2x-4\right)=0\)
\(2\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Ta có: P(x) + Q(x)
= 2x2 + 5x - 1 + (-2x2 -4x + 3) = x + 2
Cho x + 2 = 0 ⇒ x = -2. Chọn C
\(f\left(x\right)=9x^2+6x+2\)
\(=\left(9x^2+3x\right)+\left(3x+1\right)+1\)
\(=3x\left(3x+1\right)+\left(3x+1\right)+1\)
\(=\left(3x+1\right)\left(3x+1\right)+1\)
\(=\left(3x+1\right)^2+1\) \(>0\)
\(\Rightarrow\)đa thức vô nghiệm
b) \(g\left(x\right)=x^4-4x^2+2013\)
\(=\left(x^4-2x^2\right)-\left(2x^2-4\right)+2009\)
\(=x^2\left(x^2-2\right)-2\left(x^2-2\right)+2009\)
\(=\left(x^2-2\right)^2+2009\) \(>0\)
\(\Rightarrow\)đa thức vô nghiệm
Ta có: \(P\left(x\right)=2x^2+4x+3\)
\(=2\left(x^2+2x+\dfrac{3}{2}\right)\)
\(=2\left(x^2+2x+1+\dfrac{1}{2}\right)\)
\(=2\left(x+1\right)^2+1>0\forall x\)
Ta có: \(2x^2-4x+5=2x^2-4x+2+3=2\left(x^2-2x+1\right)+3=2\left(x-1\right)^2+3\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+3\ge3\forall x\)
\(\Rightarrow\)Đa thức đã cho vô nghiệm ( đpcm )