![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Có: \(2^3=8\equiv1\left(mod7\right)\Rightarrow2^{51}\equiv1\left(mod7\right)\)
\(\Rightarrow2^{51}-1⋮7\left(đpcm\right)\)
b) 270 + 370 = (22)35 + (32)35 = 435 + 935
\(=\left(4+9\right).\left(4^{34}-4^{33}.9+....-4.9^{33}+9^{34}\right)\)
\(=13.\left(4^{34}-4^{33}.9+...-4.9^{33}+9^{34}\right)⋮13\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2^{51}-1=\left(2^3\right)^{17}\)chia het cho \(2^3-1=8-1=7\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2^{51}-1=\left(2^3\right)^{17}-1\)
Mà \(7=2^3-1=>2^{51}-1\) chia hết cho 7
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
c) x10 - 10x + 9
= x10 - x - 9x + 9
= x( x9 - 1) - 9( x - 1)
= x( x - 1)( x8 + x7 + x6 +...+ x + 1) - 9( x - 1)
= ( x - 1)[ x( x8 + x7 + x6 +...+ x + 1) - 9]
Do : ( x - 1) chia hết cho ( x- 1)( x - 1)
-->( x - 1)[ x( x8 + x7 + x6 +...+ x + 1) - 9] chia hết cho ( x - 1)2
Hay , x10 - 10x + 9 chia hết cho ( x - 1)2 , đpcm
d) 8x9 - 9x8 + 1
= 8x9 - 8x8 - x8 + 1
= 8x8( x - 1) - ( x8 - 1)
= 8x8( x - 1) - ( x - 1)( x7 + x6 +...+ x + 1)
= ( x - 1)[ 8x8( - x7- x6 -...-x - 1) ]
Do : ( x - 1) chia hết cho ( x - 1)( x - 1)
--> ( x - 1)[ 8x8( - x7- x6 -...-x - 1) ] chia hết cho ( x - 1)( x - 1)
Hay , 8x9 - 9x8 + 1 chia hết cho ( x - 1)2 , đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
Nếu n = 3k (k \(\in N\)) thì 2n - 1 = 23k - 1 = 8k - 1 = 7d \(⋮7\)
Nếu n = 3k+1 (k \(\in N\)) thì 2n - 1 = 23k+1 - 1 = 23k.2 - 2 + 1
= 2(23k - 1 ) +1
= BS7 + 1 ko chia hết cho 7
Nếu n = 3k+2 (k \(\in N\)) thì 2n - 1 = 23k+2 - 1 = 23k.4 - 4 + 3
= 4(23k - 1) + 3
= BS7 + 3 ko chia hết cho 7
Do đó: 2n - 1 chia hết cho 7 khi n = 3k (k \(\in N\))
![](https://rs.olm.vn/images/avt/0.png?1311)
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
Dễ ợt đâu :))
\(2^{51}-1=\left(2+2^2+2^3+.....+2^{51}\right)-\left(1+2+2^2+....+2^{50}\right)\)
Ta có :
\(2+2^2+2^3+....+2^{51}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+....+\left(2^{49}+2^{50}+2^{51}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+....+2^{49}\left(1+2+2^2\right)\)
\(=2.7+2^4.7+....+2^{49}.7\)
\(=7\left(2+2^4+....+2^{49}\right)⋮7\)(1)
Chứng minh tương tự ta cũng có : \(\left(1+2+2^2+....+2^{50}\right)⋮7\)(2)
Từ (1) ; (2) \(\Rightarrow\left(2+2^2+2^3+.....+2^{51}\right)-\left(1+2+2^2+....+2^{50}\right)⋮7\)
Hay \(2^{51}-1⋮7\)(đpcm)