K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2017

Ta có: \(\left\{\begin{matrix}\frac{x}{x+y}>\frac{x}{x+y+z}\\\frac{y}{y+z}>\frac{y}{x+y+z}\\\frac{z}{z+x}>\frac{z}{x+y+z}\end{matrix}\right.\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)

\(\left\{\begin{matrix}\frac{x}{x+y}< \frac{x+z}{x+y+z}\\\frac{y}{y+z}< \frac{x+y}{x+y+z}\\\frac{z}{z+x}< \frac{y+z}{x+y+z}\end{matrix}\right.\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< \frac{x+y}{x+y+z}+\frac{x+y}{x+y+z}+\frac{y+z}{x+y+2}=2\)

\(\Rightarrow1< \frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< 2\left(đpcm\right)\)

4 tháng 1 2018

Đặt x/2017=y/2018=z/2019=k => x=2017k,y=2018k,z=2019k

Ta có: 4(x-y)(y-z)=4(2017k-2018k)(2018k-2019k)=4(-k)(-k)=4k(1)

(z-x)2 = (2019k-2017k)2 = (2k)2 = 4k2 (2)

Từ (1) và (2) => đpcm