\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}< 2\sqrt{n}\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2019

Ta chứng minh BĐT sau : \(\frac{1}{\sqrt{n}}=\frac{2}{2\sqrt{n}}< \frac{2}{\sqrt{n-1}+\sqrt{n}}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)

Áp dụng BĐT trên, ta có :

\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}< 2\left(\sqrt{1}-\sqrt{0}+\sqrt{2}-\sqrt{1}+...+\sqrt{n}-\sqrt{n-1}\right)=2\sqrt{n}\)

10 tháng 10 2016

ta thấy \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{2}}>...>\frac{1}{\sqrt{n}}\)nên \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}\)>\(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+...+\frac{1}{\sqrt{n}}\)=\(\frac{n}{\sqrt{n}}=\sqrt{n}\)

với mọi k thuộc N ta luôn có 

\(\frac{1}{\sqrt{k}}=\frac{2}{\sqrt{k}+\sqrt{k}}< \frac{2}{\sqrt{k}+\sqrt{k-1}}\)=\(\frac{2\left(\sqrt{k}-\sqrt{k-1}\right)}{k-k+1}=2\left(\sqrt{k}-\sqrt{k-1}\right)\)

áp dụng tính chất này ta có

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}\)<2(\(\sqrt{1}-\sqrt{0}+\sqrt{2}-\sqrt{1}\)+...+\(\sqrt{n}-\sqrt{n-1}\))=\(2\left(\sqrt{n}-\sqrt{0}\right)=2\sqrt{n}\)

27 tháng 8 2018

Mình đã chứng minh \(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}\left(n\inℕ^∗\right)\) rồi nha!

Áp dụng vào, ta được:   \(\frac{1}{2\sqrt{1}}< \sqrt{1}\)

                                  \(\frac{1}{2\sqrt{2}}< \sqrt{2}-\sqrt{1}\)

                                    \(\frac{1}{2\sqrt{3}}< \sqrt{3}-\sqrt{2}\)

                                           .............................

                                     \(\frac{1}{2\sqrt{2500}}< \sqrt{2500}-\sqrt{2499}\)

\(\Rightarrow1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2500}}\)

\(< 2\left(\sqrt{1}+\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2500}-\sqrt{2499}\right)\)

\(=2.50=100\)

=> ĐPCM

P/s: sai sót xin bỏ qua cho.

28 tháng 8 2018

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\) (pp trục căn thức ở mẫu)

                          \(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n^2+2n+1-n^2-n\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Áp dụng tính: \(S=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{400\sqrt{399}+399\sqrt{400}}\)

                        \(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)

                          \(=1-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)

Vậy S = 19/20

19 tháng 7 2016
  • Ta xét : \(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(n+1\right)-n}=2\left(\sqrt{n+1}-\sqrt{n}\right)< 2\sqrt{n+1}-2\)
  • Ta xét : \(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=\frac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-\left(n-1\right)}=2\left(\sqrt{n}-\sqrt{n-1}\right)< 2\sqrt{n}\) ;